Hexurella apachea
|
|
|
Monjaraz-Ruedas, Rodrigo, Mendez, Raymond Wyatt & Hedin, Marshal, 2023, Species delimitation, biogeography, and natural history of dwarf funnel web spiders (Mygalomorphae, Hexurellidae, Hexurella) from the United States / Mexico borderlands, ZooKeys 1167, pp. 109-157
: 109
|
109 |
Paraleucopis nigra
|
|
sp. nov.
|
Wheeler, Terry A. & Sinclair, Bradley J., 2019, Systematics of Paraleucopis Malloch with proposal of Paraleucopidae, a new family of acalyptrate Diptera, Zootaxa 4668 (3), pp. 301-328
: 319-320
|
319-320 |
Crematogaster
|
|
SP. NOV.
|
Ward, Philip S. & Blaimer, Bonnie B., 2022, Taxonomy in the phylogenomic era: species boundaries and phylogenetic relationships among North American ants of the Crematogaster scutellaris group (Formicidae: Hymenoptera), Zoological Journal of the Linnean Society 194, pp. 893-937
: 927-928
|
927-928 |
Glenognatha emertoni
|
|
|
Jimmy Cabra-García & Antonio D. Brescovit, 2016, Revision and phylogenetic analysis of the orb-weaving spider genus Glenognatha Simon, 1887 (Araneae, Tetragnathidae), Zootaxa 4069 (1), pp. 1-183
: 153-158
|
153-158 |
Carpophilus taylori
|
|
sp. nov.
|
Powell, Gareth S., 2020, Four New Species Of Carpophilus (Ecnomorphus) Motschulsky (Coleoptera: Nitidulidae: Carpophilinae) From The New World, The Coleopterists Bulletin 74 (1), pp. 175-180
: 179
|
179 |
Aphonopelma chiricahua
|
|
|
Hamilton, Chris A., Hendrixson, Brent E. & Silvestre Bringas, Karina, 2024, Discovery of a new tarantula species from the Madrean Sky Islands and the first documented instance of syntopy between two montane endemics (Araneae, Theraphosidae, Aphonopelma): a case of prior mistaken identity, ZooKeys 1210, pp. 61-98
: 61-98
|
61-98 |
Orchestomerus whiteheadi
|
|
|
Yoshitake, Hiraku & Anderson, Robert S., 2015, A Review Of The Genus Orchestomerus Dietz (Coleoptera: Curculionidae: Ceutorhynchinae: Cnemogonini) Of The Usa, The Coleopterists Bulletin 69 (4), pp. 565-578
: 575-576
|
575-576 |
Aneflomorpha linsleyae
|
|
|
Lingafelter, Steven W., 2022, Revision of Aneflomorpha Casey and Neaneflus Linsley (Coleoptera: Cerambycidae) of the United States with an illustrated key to species, Insecta Mundi 2022 (954), pp. 1-59
: 35
|
35 |
Ripersiella colombiensis
|
|
|
Schneider, Scott A. & LaPolla, John S., 2022, A Neotropical complex of Ripersiella species (Hemiptera, Coccomorpha, Rhizoecidae) collected from the nests of Acropyga ants (Hymenoptera, Formicidae), ZooKeys 1123, pp. 1-30
: 1
|
1 |
Aphonopelma jacobii
|
|
sp. nov.
|
Hamilton, Chris A., Hendrixson, Brent E. & Silvestre Bringas, Karina, 2024, Discovery of a new tarantula species from the Madrean Sky Islands and the first documented instance of syntopy between two montane endemics (Araneae, Theraphosidae, Aphonopelma): a case of prior mistaken identity, ZooKeys 1210, pp. 61-98
: 61-98
|
61-98 |
Zagrammosoma headricki
|
|
sp. nov.
|
Perry, Ryan K. & Heraty, John M., 2021, Read between the lineata: A revision of the tattooed wasps, Zagrammosoma Ashmead (Hymenoptera: Eulophidae), with descriptions of eleven new species, Zootaxa 4916 (1), pp. 1-108
: 54-57
|
54-57 |
Brachylinga pavida
|
|
|
Webb, Donald W. & Metz, Mark A., 2006, A Revision of the New World Genera Brachylinga Irwin and Lyneborg and Lysilinga Irwin and Lyneborg (Diptera: Therevidae: Therevinae) with the Description of a New Genus, Elcaribe Webb, Zootaxa 1288 (1288), pp. 1-241
: 104-108
|
104-108 |
Amiota hyalou
|
|
sp. nov.
|
Jones, Lance E. & Grimaldi, David A., 2022, Revision Of The Nearctic Species Of The Genus Amiota Loew (Diptera: Drosophilidae), Bulletin of the American Museum of Natural History 2022 (458), pp. 1-181
: 22-23
|
22-23 |
Amiota antitormentum
|
|
sp. nov.
|
Jones, Lance E. & Grimaldi, David A., 2022, Revision Of The Nearctic Species Of The Genus Amiota Loew (Diptera: Drosophilidae), Bulletin of the American Museum of Natural History 2022 (458), pp. 1-181
: 34-40
|
34-40 |
Lysilinga aurantiaca
|
|
|
Webb, Donald W. & Metz, Mark A., 2006, A Revision of the New World Genera Brachylinga Irwin and Lyneborg and Lysilinga Irwin and Lyneborg (Diptera: Therevidae: Therevinae) with the Description of a New Genus, Elcaribe Webb, Zootaxa 1288 (1288), pp. 1-241
: 208-210
|
208-210 |
Hallomenus (Xeuxes) serricornis
|
|
|
Johnston, M. Andrew, Warner, William B. & Pollock, Darren A., 2024, New Records and a Checklist of Melandryidae and Tetratomidae Known from Arizona, USA (Coleoptera: Tenebrionoidea), The Coleopterists Bulletin 78 (1), pp. 53-60
: 58
|
58 |
Brachymelecta interrupta
|
|
|
Onuferko, Thomas M., Packer, Laurence & Genaro, Julio A., 2021, Brachymelecta Linsley, 1939, previously the rarest North American bee genus, was described from an aberrant specimen and is the senior synonym for Xeromelecta Linsley, 1939, European Journal of Taxonomy 754, pp. 1-51
: 30-33
|
30-33 |
Phylloicus mexicanus
|
|
|
PRATHER, AYSHA L., 2003, Revision of the Neotropical caddisfly genus Phylloicus (Trichoptera: Calamoceratidae), Zootaxa 275 (1), pp. 1-214
: 71-73
|
71-73 |
Triepeolus kathrynae
|
|
|
Onuferko, Thomas M. & Rightmyer, Molly G., 2024, A revision of the simplex species group of the cleptoparasitic bee genus Triepeolus Robertson, 1901 (Hymenoptera: Apidae), European Journal of Taxonomy 950 (1), pp. 1-106
: 34-40
|
34-40 |
Amiota minor
|
|
|
Jones, Lance E. & Grimaldi, David A., 2022, Revision Of The Nearctic Species Of The Genus Amiota Loew (Diptera: Drosophilidae), Bulletin of the American Museum of Natural History 2022 (458), pp. 1-181
: 74-77
|
74-77 |
Lasioglossum (Dialictus) mesillense
|
|
|
Gardner, Joel & Gibbs, Jason, 2020, The ‘ red-tailed’ Lasioglossum (Dialictus) (Hymenoptera: Halictidae) of the western Nearctic, European Journal of Taxonomy 725, pp. 1-242
: 125-136
|
125-136 |
Roederiodes lawrencei
|
|
sp. nov.
|
Sinclair, Bradley J., 2023, Revision of New World species of Roederiodes Coquillett (Diptera: Empididae: Clinocerinae), Zootaxa 5301 (3), pp. 336-364
: 345-346
|
345-346 |
Amiota incurva
|
|
sp. nov.
|
Jones, Lance E. & Grimaldi, David A., 2022, Revision Of The Nearctic Species Of The Genus Amiota Loew (Diptera: Drosophilidae), Bulletin of the American Museum of Natural History 2022 (458), pp. 1-181
: 44-45
|
44-45 |
Roederiodes notialis
|
|
sp. nov.
|
Sinclair, Bradley J., 2023, Revision of New World species of Roederiodes Coquillett (Diptera: Empididae: Clinocerinae), Zootaxa 5301 (3), pp. 336-364
: 347
|
347 |
Triepeolus segregatus
|
|
|
Onuferko, Thomas M. & Rightmyer, Molly G., 2024, A revision of the simplex species group of the cleptoparasitic bee genus Triepeolus Robertson, 1901 (Hymenoptera: Apidae), European Journal of Taxonomy 950 (1), pp. 1-106
: 75-87
|
75-87 |
Scaralina aethrinsula
|
|
sp. nov.
|
Yanega, Douglas, Goemans, Geert, Dam, Matthew Van, Gómez-Marco, Francesc & Hoddle, Mark, 2024, Description of a new genus of North and Central American planthoppers (Hemiptera: Fulgoridae) with fourteen new species, Zootaxa 5443 (1), pp. 1-53
: 9-11
|
9-11 |
Lasioglossum (Dialictus) gaudiale
|
|
|
Gardner, Joel & Gibbs, Jason, 2023, Revision of the Nearctic species of the Lasioglossum (Dialictus) gemmatum species complex (Hymenoptera: Halictidae), European Journal of Taxonomy 858 (1), pp. 1-222
: 76-86
|
76-86 |
Lasioglossum (Dialictus) holzenthali
|
|
sp. nov.
|
Gardner, Joel & Gibbs, Jason, 2023, Revision of the Nearctic species of the Lasioglossum (Dialictus) gemmatum species complex (Hymenoptera: Halictidae), European Journal of Taxonomy 858 (1), pp. 1-222
: 100-108
|
100-108 |
Lasioglossum (Dialictus) eremum
|
|
sp. nov.
|
Gardner, Joel & Gibbs, Jason, 2023, Revision of the Nearctic species of the Lasioglossum (Dialictus) gemmatum species complex (Hymenoptera: Halictidae), European Journal of Taxonomy 858 (1), pp. 1-222
: 70-76
|
70-76 |
Trachymyrmex pomonae
|
|
new species
|
Rabeling, Ch., Cover, S. P., Johnson, R. A. & Mueller, U. G., 2007, A review of the North American species of the fungus-gardening ant genus Trachymyrmex (Hymenoptera: Formicidae)., Zootaxa 1664, pp. 1-53
: 14-16
|
14-16 |
Temnothorax pergandei
|
|
|
Prebus, Matthew M., 2021, Taxonomic revision of the Temnothorax salvini clade (Hymenoptera: Formicidae), with a key to the clades of New World Temnothorax, PeerJ (e 11514) 9, pp. 1-462
: 240-253
|
240-253 |
Eulechriops hovorei
|
|
sp. nov.
|
Barman, E. H., Michat, M. C., Alarie, Y. & Wolfe, G. W., 2007, Figs. 16 – 17. 16 in A Description of the First Instar of Hoperius planatus Fall, 1927 (Coleoptera: Dytiscidae: Colymbetinae: Colymbetini), with Phylogenetic Implications, The Coleopterists Bulletin 61 (2), pp. 283-286
: 283-286
|
283-286 |
Scatophila pulchra
|
|
|
Zatwarnicki, Tadeusz & Mathis, Wayne N., 2024, Revision of the Nearctic Species of the Shore-Fly Genus Scatophila Becker (Diptera: Ephydridae), Zootaxa 5487 (1), pp. 1-100
: 91-94
|
91-94 |
Scatophila hesperia
|
|
|
Zatwarnicki, Tadeusz & Mathis, Wayne N., 2024, Revision of the Nearctic Species of the Shore-Fly Genus Scatophila Becker (Diptera: Ephydridae), Zootaxa 5487 (1), pp. 1-100
: 32-35
|
32-35 |
Ooencyrtus californicus
|
|
|
Triapitsyn, Serguei V., Rugman-Jones, Paul F. & Perring, Thomas M., 2021, Re-collection and identity of Ooencyrtus californicus (Hymenoptera: Encyrtidae) and its new synonym, Ooencyrtus lucidus, Zootaxa 4966 (1), pp. 97-100
: 98-100
|
98-100 |
Scatophila viridella
|
|
|
Zatwarnicki, Tadeusz & Mathis, Wayne N., 2024, Revision of the Nearctic Species of the Shore-Fly Genus Scatophila Becker (Diptera: Ephydridae), Zootaxa 5487 (1), pp. 1-100
: 45-49
|
45-49 |
Nallachius pulchellus
|
|
|
Bowles, David E., Contreras-Ramos, A, Mariza & Ferro, Michael L., 2015, New distributional records for pleasing lacewings (Neuroptera: Dilaridae, Nallachius spp.) in the Americas, Insecta Mundi 2015 (406), pp. 1-10
: 4-6
|
4-6 |
Arsapnia decepta
|
|
|
Baumann, Richard W. & Stark, Bill P., 2017, Variation In The Epiproct Of Arsapnia Decepta Banks, 1897 (Plecoptera: Capniidae), With Comments On Arsapnia Coyote (Nelson & Baumann 1987), Illiesia 13 (1), pp. 1-21
: 2-17
|
2-17 |
Laemosaccus andersoni
|
|
sp. nov.
|
Hespenheide, Henry A., 2019, A Review of the Genus Laemosaccus Schönherr, 1826 (Coleoptera: Curculionidae: Mesoptiliinae) from Baja California and America North of Mexico: Diversity and Mimicry, The Coleopterists Bulletin (MIMICRY AND LAEMOSACCUS In an earlier paper (Hespenheide 1996), I presented the hypothesis that species of Laemosaccus of the L. nephele group with red humeral spots on the elytra were Batesian mimics of members of the Chrysomelidae in the subfamily Clytrinae. There is no evidence that Laemosaccus species are distasteful, and what is either L. nephele and / or L. obrieni have been reported as prey items of birds (Beal 1912). In Cave Creek Canyon, Cochise County, Arizona, 21 forms (species and “ subspecies ”) of Clytrinae were hypothesized to be the primary models of 22 species of mimics in the families Anthribidae (one species), Bruchidae (two species), Buprestidae (four species), Chrysomelidae, subfamily Cryptocephalinae (three species), Coccinellidae (six species), Curculionidae, subfamily Baridinae (one species), and Laemosaccus (five species). Of these, the coccinellids and the cryptocephaline chrysomelids are probably distasteful Mullerian co-mimics. Ecologically, the species of Laemosaccus co-occurred with their clytrine models on both desert legumes and canyon oaks, although more clytrine species occurred in the desert and more Laemosaccus species occurred in the canyons. Species of clytrines showing the mimetic pattern are common throughout Mexico (Bellamy 2003, who renamed the Mexican buprestid genus Acherusia Laporte and Gory, 1837 as Mimicoclytrina Bellamy to reflect their resemblance to clytrines), but decline in numbers of species and in the proportion of the clytrine fauna through Central America to Panama (Hespenheide 1996, fig. 2). Laemosaccus seems to follow a similar pattern. Mimicry is more common in large faunas, especially in wet tropical areas (Hespenheide 1986, 1995); because the largest clytrine fauna is in Mexico, the clytrine mimicry complex is also larger there (Hespenheide 1996). This complex has more members than I first enumerated and deserves further study. The evolution of mimicry produces resemblances between unrelated species (Laemosaccus and other putative mimics, with clytrines and perhaps other Chrysomelidae and Coccinellidae as models; see Hespenheide 1976, 1996) and selects against the divergence of related species. In Batesian mimicry - hypothesized to be the form of relationship between Laemosaccus and clytrines - the selection for precision of mimicry is stronger on the mimic (Laemosaccus), so that resemblances among them should be closer, regardless of ancestry. Close morphological resemblances based on ecology rather than ancestry may be termed mimetic homoplasy (Hespenheide 2005) and can make recognition of species difficult (as in Laemosaccus) or complicate phylogenetic analyses. I have speculated (Hespenheide 1996) that the sympatric “ subspecies ” of the clytrine models (Moldenke 1970) may in fact be reproductively isolated sibling species. It will be interesting to see whether or not genomic studies show the closeness of relationships among Laemosaccus species that the morphology suggests) 73 (4), pp. 905-939
: 916-917
|
916-917 |
Lymantes obrieni
|
|
sp. nov.
|
Anderson, Robert S., 2016, A Taxonomic Revision of the GenusLymantesSchönherr, 1838 (Coleoptera: Curculionidae: Molytinae: Lymantini) in the United States Ofamerica, The Coleopterists Bulletin 70 (1), pp. 111-124
: 111-124
|
111-124 |
Cyrtopeltocoris huachucae
|
|
|
Wyniger, Denise, Schuh, Randall T. & Henry, Thomas J., 2023, Revision of the North American Hallodapini (Insecta: Hemiptera: Heteroptera: Miridae: Phylinae), American Museum Novitates 2023 (3994), pp. 1-48
: 29-30
|
29-30 |
Dipropus reinae
|
|
sp. nov.
|
Johnson, Paul J., 2016, Five new species of Dipropus Germar (Coleoptera: Elateridae) from west-central North America, and a lectotype designation for Elater soleatus Say, Insecta Mundi 2016 (523), pp. 1-27
: 5-6
|
5-6 |
Coniopteryx fitchi
|
|
|
Ferro, Michael L., 2018, New state records for Coniopterygidae (Neuroptera) with an updated list of species in North America north of Mexico, Insecta Mundi 668, pp. 1-20
: 7
|
7 |
Pachybrachis gilberti
|
|
sp. nov.
|
Barney, Robert J., 2019, Definition and Revision of the Pubescens Species-Group of North American Pachybrachis Chevrolat (Coleoptera: Chrysomelidae: Cryptocephalinae), Including Descriptions of Three New Species, The Coleopterists Bulletin 73 (4), pp. 1017-1048
: 1037-1041
|
1037-1041 |
Strumigenys chiricahua
|
|
|
Booher, Douglas B., 2021, The ant genus Strumigenys Smith, 1860 (Hymenoptera: Formicidae) in western North America North of Mexico, Zootaxa 5061 (2), pp. 201-248
: 223-224
|
223-224 |
Coniopteryx
|
|
|
Ferro, Michael L., 2018, New state records for Coniopterygidae (Neuroptera) with an updated list of species in North America north of Mexico, Insecta Mundi 668, pp. 1-20
: 9-10
|
9-10 |
Dipropus yaqui
|
|
sp. nov.
|
Johnson, Paul J., 2016, Five new species of Dipropus Germar (Coleoptera: Elateridae) from west-central North America, and a lectotype designation for Elater soleatus Say, Insecta Mundi 2016 (523), pp. 1-27
: 9-11
|
9-11 |
Syscia madrensis
|
|
sp. nov.
|
Longino, John T. & Branstetter, Michael G., 2021, Integrating UCE Phylogenomics With Traditional Taxonomy Reveals a Trove of New World Syscia Species (Formicidae: Dorylinae), Insect Systematics and Diversity 5 (2), No. 2, pp. 1-51
: 28
|
28 |
Acmaeodera amplicollis
|
|
|
Westcott, Richard L. & Raschko, Mike, 2018, New plant associations for adults of some species of Acmaeodera Eschscholtz (Coleoptera: Buprestidae) occurring in the western United States, Insecta Mundi 644, pp. 1-3
: 2
|
2 |
Laemosaccus bimaculatus
|
|
sp. nov.
|
Hespenheide, Henry A., 2019, A Review of the Genus Laemosaccus Schönherr, 1826 (Coleoptera: Curculionidae: Mesoptiliinae) from Baja California and America North of Mexico: Diversity and Mimicry, The Coleopterists Bulletin (MIMICRY AND LAEMOSACCUS In an earlier paper (Hespenheide 1996), I presented the hypothesis that species of Laemosaccus of the L. nephele group with red humeral spots on the elytra were Batesian mimics of members of the Chrysomelidae in the subfamily Clytrinae. There is no evidence that Laemosaccus species are distasteful, and what is either L. nephele and / or L. obrieni have been reported as prey items of birds (Beal 1912). In Cave Creek Canyon, Cochise County, Arizona, 21 forms (species and “ subspecies ”) of Clytrinae were hypothesized to be the primary models of 22 species of mimics in the families Anthribidae (one species), Bruchidae (two species), Buprestidae (four species), Chrysomelidae, subfamily Cryptocephalinae (three species), Coccinellidae (six species), Curculionidae, subfamily Baridinae (one species), and Laemosaccus (five species). Of these, the coccinellids and the cryptocephaline chrysomelids are probably distasteful Mullerian co-mimics. Ecologically, the species of Laemosaccus co-occurred with their clytrine models on both desert legumes and canyon oaks, although more clytrine species occurred in the desert and more Laemosaccus species occurred in the canyons. Species of clytrines showing the mimetic pattern are common throughout Mexico (Bellamy 2003, who renamed the Mexican buprestid genus Acherusia Laporte and Gory, 1837 as Mimicoclytrina Bellamy to reflect their resemblance to clytrines), but decline in numbers of species and in the proportion of the clytrine fauna through Central America to Panama (Hespenheide 1996, fig. 2). Laemosaccus seems to follow a similar pattern. Mimicry is more common in large faunas, especially in wet tropical areas (Hespenheide 1986, 1995); because the largest clytrine fauna is in Mexico, the clytrine mimicry complex is also larger there (Hespenheide 1996). This complex has more members than I first enumerated and deserves further study. The evolution of mimicry produces resemblances between unrelated species (Laemosaccus and other putative mimics, with clytrines and perhaps other Chrysomelidae and Coccinellidae as models; see Hespenheide 1976, 1996) and selects against the divergence of related species. In Batesian mimicry - hypothesized to be the form of relationship between Laemosaccus and clytrines - the selection for precision of mimicry is stronger on the mimic (Laemosaccus), so that resemblances among them should be closer, regardless of ancestry. Close morphological resemblances based on ecology rather than ancestry may be termed mimetic homoplasy (Hespenheide 2005) and can make recognition of species difficult (as in Laemosaccus) or complicate phylogenetic analyses. I have speculated (Hespenheide 1996) that the sympatric “ subspecies ” of the clytrine models (Moldenke 1970) may in fact be reproductively isolated sibling species. It will be interesting to see whether or not genomic studies show the closeness of relationships among Laemosaccus species that the morphology suggests) 73 (4), pp. 905-939
: 918-920
|
918-920 |
Agrilus paraimpexus
|
|
sp. nov.
|
Hespenheide, Henry A., 2007, The identity of Agrilus impexus Horn, a new species, and taxonomic notes and records for other Agrilus Curtis species (Coleoptera: Buprestidae), Zootaxa 1617 (1), pp. 57-66
: 59-63
|
59-63 |
Laemosaccus arizonensis
|
|
sp. nov.
|
Hespenheide, Henry A., 2019, A Review of the Genus Laemosaccus Schönherr, 1826 (Coleoptera: Curculionidae: Mesoptiliinae) from Baja California and America North of Mexico: Diversity and Mimicry, The Coleopterists Bulletin (MIMICRY AND LAEMOSACCUS In an earlier paper (Hespenheide 1996), I presented the hypothesis that species of Laemosaccus of the L. nephele group with red humeral spots on the elytra were Batesian mimics of members of the Chrysomelidae in the subfamily Clytrinae. There is no evidence that Laemosaccus species are distasteful, and what is either L. nephele and / or L. obrieni have been reported as prey items of birds (Beal 1912). In Cave Creek Canyon, Cochise County, Arizona, 21 forms (species and “ subspecies ”) of Clytrinae were hypothesized to be the primary models of 22 species of mimics in the families Anthribidae (one species), Bruchidae (two species), Buprestidae (four species), Chrysomelidae, subfamily Cryptocephalinae (three species), Coccinellidae (six species), Curculionidae, subfamily Baridinae (one species), and Laemosaccus (five species). Of these, the coccinellids and the cryptocephaline chrysomelids are probably distasteful Mullerian co-mimics. Ecologically, the species of Laemosaccus co-occurred with their clytrine models on both desert legumes and canyon oaks, although more clytrine species occurred in the desert and more Laemosaccus species occurred in the canyons. Species of clytrines showing the mimetic pattern are common throughout Mexico (Bellamy 2003, who renamed the Mexican buprestid genus Acherusia Laporte and Gory, 1837 as Mimicoclytrina Bellamy to reflect their resemblance to clytrines), but decline in numbers of species and in the proportion of the clytrine fauna through Central America to Panama (Hespenheide 1996, fig. 2). Laemosaccus seems to follow a similar pattern. Mimicry is more common in large faunas, especially in wet tropical areas (Hespenheide 1986, 1995); because the largest clytrine fauna is in Mexico, the clytrine mimicry complex is also larger there (Hespenheide 1996). This complex has more members than I first enumerated and deserves further study. The evolution of mimicry produces resemblances between unrelated species (Laemosaccus and other putative mimics, with clytrines and perhaps other Chrysomelidae and Coccinellidae as models; see Hespenheide 1976, 1996) and selects against the divergence of related species. In Batesian mimicry - hypothesized to be the form of relationship between Laemosaccus and clytrines - the selection for precision of mimicry is stronger on the mimic (Laemosaccus), so that resemblances among them should be closer, regardless of ancestry. Close morphological resemblances based on ecology rather than ancestry may be termed mimetic homoplasy (Hespenheide 2005) and can make recognition of species difficult (as in Laemosaccus) or complicate phylogenetic analyses. I have speculated (Hespenheide 1996) that the sympatric “ subspecies ” of the clytrine models (Moldenke 1970) may in fact be reproductively isolated sibling species. It will be interesting to see whether or not genomic studies show the closeness of relationships among Laemosaccus species that the morphology suggests) 73 (4), pp. 905-939
: 917-918
|
917-918 |
Piazorhinus caeloinsularis
|
|
sp. nov.
|
Hespenheide, Henry A., 2021, A New Piazorhinus Schoenherr, 1836 from Arizona and New Mexico (Coleoptera: Curculionidae: Curculioninae), The Coleopterists Bulletin 75 (2), pp. 497-500
: 497-498
|
497-498 |
Microctonus portalensis
|
|
sp. nov.
|
Pucci, Thomas M., 2013, Contributions to the classification of North American Microctonus (Braconidae, Euphorinae), Zootaxa 3725 (1), pp. 1-150
: 21-22
|
21-22 |
Strumigenys arizonica
|
|
|
Booher, Douglas B., 2021, The ant genus Strumigenys Smith, 1860 (Hymenoptera: Formicidae) in western North America North of Mexico, Zootaxa 5061 (2), pp. 201-248
: 222
|
222 |
Orthonevra flukei
|
|
|
Miranda, Gil F. G., Soares, Matheus M. M. & Thompson, Christian, 2024, The Neotropical Orthonevra Macquart, 1829 (Diptera: Syrphidae), Zootaxa 5484 (1), pp. 1-78
: 25-27
|
25-27 |
Eucelatoria sabroskyi
|
|
sp. nov.
|
Burington, Zelia L., 2022, A taxonomic revision of the Eucelatoria ferox species group (Diptera: Tachinidae), Zootaxa 5143 (1), pp. 1-104
: 38-40
|
38-40 |
Coelopoeta fissurina
|
|
sp. nov.
|
Kaila, Lauri, 2024, A review of Coelopoetinae (Lepidoptera, Gelechioidea, Pterolonchidae), a moth subfamily confined to western North America, with descriptions of seven new species, Zootaxa 5458 (3), pp. 361-384
: 379
|
379 |
Scaralina metcalfi
|
|
sp. nov.
|
Yanega, Douglas, Goemans, Geert, Dam, Matthew Van, Gómez-Marco, Francesc & Hoddle, Mark, 2024, Description of a new genus of North and Central American planthoppers (Hemiptera: Fulgoridae) with fourteen new species, Zootaxa 5443 (1), pp. 1-53
: 26-32
|
26-32 |
Dolopomyrmex pilatus
|
|
new species
|
Cover, S. P. & Deyrup, M., 2007, A new ant genus from the southwestern United States., Advances in ant systematics (Hymenoptera: Formicidae): Homage to E. O. Wilson - 50 years of contributions. (Memoirs of the American Entomological Institute 80), pp. 89-99
: 92-94
|
92-94 |
Aneflomorpha cazieri
|
|
|
Lingafelter, Steven W., 2022, Revision of Aneflomorpha Casey and Neaneflus Linsley (Coleoptera: Cerambycidae) of the United States with an illustrated key to species, Insecta Mundi 2022 (954), pp. 1-59
: 28-29
|
28-29 |
Lasioglossum (Dialictus) clavicorne
|
|
sp. nov.
|
Gardner, Joel & Gibbs, Jason, 2020, The ‘ red-tailed’ Lasioglossum (Dialictus) (Hymenoptera: Halictidae) of the western Nearctic, European Journal of Taxonomy 725, pp. 1-242
: 53-58
|
53-58 |
Laemosaccus howdenae
|
|
sp. nov.
|
Hespenheide, Henry A., 2019, A Review of the Genus Laemosaccus Schönherr, 1826 (Coleoptera: Curculionidae: Mesoptiliinae) from Baja California and America North of Mexico: Diversity and Mimicry, The Coleopterists Bulletin (MIMICRY AND LAEMOSACCUS In an earlier paper (Hespenheide 1996), I presented the hypothesis that species of Laemosaccus of the L. nephele group with red humeral spots on the elytra were Batesian mimics of members of the Chrysomelidae in the subfamily Clytrinae. There is no evidence that Laemosaccus species are distasteful, and what is either L. nephele and / or L. obrieni have been reported as prey items of birds (Beal 1912). In Cave Creek Canyon, Cochise County, Arizona, 21 forms (species and “ subspecies ”) of Clytrinae were hypothesized to be the primary models of 22 species of mimics in the families Anthribidae (one species), Bruchidae (two species), Buprestidae (four species), Chrysomelidae, subfamily Cryptocephalinae (three species), Coccinellidae (six species), Curculionidae, subfamily Baridinae (one species), and Laemosaccus (five species). Of these, the coccinellids and the cryptocephaline chrysomelids are probably distasteful Mullerian co-mimics. Ecologically, the species of Laemosaccus co-occurred with their clytrine models on both desert legumes and canyon oaks, although more clytrine species occurred in the desert and more Laemosaccus species occurred in the canyons. Species of clytrines showing the mimetic pattern are common throughout Mexico (Bellamy 2003, who renamed the Mexican buprestid genus Acherusia Laporte and Gory, 1837 as Mimicoclytrina Bellamy to reflect their resemblance to clytrines), but decline in numbers of species and in the proportion of the clytrine fauna through Central America to Panama (Hespenheide 1996, fig. 2). Laemosaccus seems to follow a similar pattern. Mimicry is more common in large faunas, especially in wet tropical areas (Hespenheide 1986, 1995); because the largest clytrine fauna is in Mexico, the clytrine mimicry complex is also larger there (Hespenheide 1996). This complex has more members than I first enumerated and deserves further study. The evolution of mimicry produces resemblances between unrelated species (Laemosaccus and other putative mimics, with clytrines and perhaps other Chrysomelidae and Coccinellidae as models; see Hespenheide 1976, 1996) and selects against the divergence of related species. In Batesian mimicry - hypothesized to be the form of relationship between Laemosaccus and clytrines - the selection for precision of mimicry is stronger on the mimic (Laemosaccus), so that resemblances among them should be closer, regardless of ancestry. Close morphological resemblances based on ecology rather than ancestry may be termed mimetic homoplasy (Hespenheide 2005) and can make recognition of species difficult (as in Laemosaccus) or complicate phylogenetic analyses. I have speculated (Hespenheide 1996) that the sympatric “ subspecies ” of the clytrine models (Moldenke 1970) may in fact be reproductively isolated sibling species. It will be interesting to see whether or not genomic studies show the closeness of relationships among Laemosaccus species that the morphology suggests) 73 (4), pp. 905-939
: 927-928
|
927-928 |
Lasioglossum (Dialictus) deludens
|
|
sp. nov.
|
Gardner, Joel & Gibbs, Jason, 2023, Revision of the Nearctic species of the Lasioglossum (Dialictus) gemmatum species complex (Hymenoptera: Halictidae), European Journal of Taxonomy 858 (1), pp. 1-222
: 32-52
|
32-52 |
Lasioglossum (Dialictus) clematisellum
|
|
|
Gardner, Joel & Gibbs, Jason, 2020, The ‘ red-tailed’ Lasioglossum (Dialictus) (Hymenoptera: Halictidae) of the western Nearctic, European Journal of Taxonomy 725, pp. 1-242
: 58-69
|
58-69 |
Bothronotoxenus tishechkini
|
|
sp. nov.
|
Eldredge, K. Taro, 2011, Bothronotoxenus Eldredge, A New Genus Of Aleocharinae (Coleoptera: Staphylinidae) From Arizona, U. S. A., The Coleopterists Bulletin 65 (4), pp. 381-386
: 383-384
|
383-384 |
Saropogon bryanti
|
|
|
Alberts, Charlotte H. E. & Fisher, Eric M., 2022, A new species of Saropogon Loew, 1847 (Diptera, Asilidae) from Arizona, with a review of the Nearctic species north of Mexico, ZooKeys 1130, pp. 1-63
: 1
|
1 |
Lasioglossum (Dialictus) hudsoniellum
|
|
|
Gardner, Joel & Gibbs, Jason, 2020, The ‘ red-tailed’ Lasioglossum (Dialictus) (Hymenoptera: Halictidae) of the western Nearctic, European Journal of Taxonomy 725, pp. 1-242
: 90-99
|
90-99 |
Knightopsallus
|
|
gen. nov.
|
Schuh, Randall T., 2006, Revision, Phylogenetic, Biogeographic, And Host Analyses Of The Endemic Western North American Phymatopsallus Group, With The Description Of 9 New Genera And 15 New Species (Insecta: Hemiptera: Miridae: Phylinae), Bulletin of the American Museum of Natural History 2006 (301), pp. 1-115
: 68-71
|
68-71 |
Triepeolus oblongimacula
|
|
sp. nov.
|
Onuferko, Thomas M. & Rightmyer, Molly G., 2024, A revision of the simplex species group of the cleptoparasitic bee genus Triepeolus Robertson, 1901 (Hymenoptera: Apidae), European Journal of Taxonomy 950 (1), pp. 1-106
: 53-57
|
53-57 |
Vaejovis cashi
|
|
sp. nov.
|
Graham, Matthew R., 2007, Sky island Vaejovis: two new species and a redescription of V. vorhiesi Stahnke (Scorpiones: Vaejovidae), Euscorpius 51 (51), pp. 1-14
: 6-9
|
6-9 |
Eutrichosoma mirabile
|
|
|
Baker, Austin J. & Heraty, John M., 2020, Larval morphology and life history of Eutrichosoma mirabile Ashmead and description of a new species of Eutrichosoma (Hymenoptera, Chalcidoidea), Journal of Hymenoptera Research 75, pp. 67-85
: 67
|
67 |
Syzeton arizonae
|
|
sp. nov.
|
Gompel, Nicolas, 2022, The genus Syzeton Blackburn, 1891 (Coleoptera, Aderidae) in the United States of America, Zootaxa 5162 (3), pp. 243-267
: 258
|
258 |
Hemicrepidius montanus
|
|
|
Etzler, Frank E., 2020, A Revision of the Genus Hemicrepidius Germar, 1839 (Coleoptera: Elateridae) of the New World, with Comments on Global Classification, The Coleopterists Bulletin (mo 18) 74, pp. 1-126
: 63-64
|
63-64 |
Hallomenus (Hallomenus) scapularis
|
|
|
Johnston, M. Andrew, Warner, William B. & Pollock, Darren A., 2024, New Records and a Checklist of Melandryidae and Tetratomidae Known from Arizona, USA (Coleoptera: Tenebrionoidea), The Coleopterists Bulletin 78 (1), pp. 53-60
: 57
|
57 |
Panthea greyi
|
|
sp. nov.
|
Anweiler, Gary G., 2009, Revision of the New World Panthea Hübner (Lepidoptera, Noctuidae) with descriptions of 5 new species and 2 new subspecies, ZooKeys 9 (9), pp. 97-134
: 115-117
|
115-117 |
Laemosaccus vaurieae
|
|
sp. nov.
|
Hespenheide, Henry A., 2019, A Review of the Genus Laemosaccus Schönherr, 1826 (Coleoptera: Curculionidae: Mesoptiliinae) from Baja California and America North of Mexico: Diversity and Mimicry, The Coleopterists Bulletin (MIMICRY AND LAEMOSACCUS In an earlier paper (Hespenheide 1996), I presented the hypothesis that species of Laemosaccus of the L. nephele group with red humeral spots on the elytra were Batesian mimics of members of the Chrysomelidae in the subfamily Clytrinae. There is no evidence that Laemosaccus species are distasteful, and what is either L. nephele and / or L. obrieni have been reported as prey items of birds (Beal 1912). In Cave Creek Canyon, Cochise County, Arizona, 21 forms (species and “ subspecies ”) of Clytrinae were hypothesized to be the primary models of 22 species of mimics in the families Anthribidae (one species), Bruchidae (two species), Buprestidae (four species), Chrysomelidae, subfamily Cryptocephalinae (three species), Coccinellidae (six species), Curculionidae, subfamily Baridinae (one species), and Laemosaccus (five species). Of these, the coccinellids and the cryptocephaline chrysomelids are probably distasteful Mullerian co-mimics. Ecologically, the species of Laemosaccus co-occurred with their clytrine models on both desert legumes and canyon oaks, although more clytrine species occurred in the desert and more Laemosaccus species occurred in the canyons. Species of clytrines showing the mimetic pattern are common throughout Mexico (Bellamy 2003, who renamed the Mexican buprestid genus Acherusia Laporte and Gory, 1837 as Mimicoclytrina Bellamy to reflect their resemblance to clytrines), but decline in numbers of species and in the proportion of the clytrine fauna through Central America to Panama (Hespenheide 1996, fig. 2). Laemosaccus seems to follow a similar pattern. Mimicry is more common in large faunas, especially in wet tropical areas (Hespenheide 1986, 1995); because the largest clytrine fauna is in Mexico, the clytrine mimicry complex is also larger there (Hespenheide 1996). This complex has more members than I first enumerated and deserves further study. The evolution of mimicry produces resemblances between unrelated species (Laemosaccus and other putative mimics, with clytrines and perhaps other Chrysomelidae and Coccinellidae as models; see Hespenheide 1976, 1996) and selects against the divergence of related species. In Batesian mimicry - hypothesized to be the form of relationship between Laemosaccus and clytrines - the selection for precision of mimicry is stronger on the mimic (Laemosaccus), so that resemblances among them should be closer, regardless of ancestry. Close morphological resemblances based on ecology rather than ancestry may be termed mimetic homoplasy (Hespenheide 2005) and can make recognition of species difficult (as in Laemosaccus) or complicate phylogenetic analyses. I have speculated (Hespenheide 1996) that the sympatric “ subspecies ” of the clytrine models (Moldenke 1970) may in fact be reproductively isolated sibling species. It will be interesting to see whether or not genomic studies show the closeness of relationships among Laemosaccus species that the morphology suggests) 73 (4), pp. 905-939
: 931
|
931 |
Tricholita ferrisi
|
|
sp. nov.
|
Crabo, Lars & Lafontaine, Donald, 2009, A Revision of Lasionycta Aurivillius (Lepidoptera: Noctuidae) for North America and notes on Eurasian species, with descriptions of 17 new species, 6 new subspecies, a new genus, and two new species of Tricholita Grote, ZooKeys 30 (30), pp. 1-156
: 102-104
|
102-104 |
Hemicrepidius soccifer
|
|
|
Etzler, Frank E., 2020, A Revision of the Genus Hemicrepidius Germar, 1839 (Coleoptera: Elateridae) of the New World, with Comments on Global Classification, The Coleopterists Bulletin (mo 18) 74, pp. 1-126
: 81-83
|
81-83 |
Parasemidalis fuscipennis
|
|
|
Ferro, Michael L., 2018, New state records for Coniopterygidae (Neuroptera) with an updated list of species in North America north of Mexico, Insecta Mundi 668, pp. 1-20
: 11
|
11 |
Hydraena (Hydraenopsis) arizonica
|
|
|
Perkins, Philip D., 2023, New Neotropical and Nearctic species of water beetles in the genera Hydraena Kugelann and Ochthebius Leach, a key to North American genera and subgenera of the family, new distribution records, and a synopsis of ecology, behavior and morphology related to aquatic life (Coleoptera: Hydraenidae), Zootaxa 5367 (1), pp. 1-86
: 64
|
64 |
Scatophila hirsuta
|
|
|
Zatwarnicki, Tadeusz & Mathis, Wayne N., 2024, Revision of the Nearctic Species of the Shore-Fly Genus Scatophila Becker (Diptera: Ephydridae), Zootaxa 5487 (1), pp. 1-100
: 83-86
|
83-86 |
Dasysyrphus creper
|
|
|
Locke, Michelle M. & Skevington, Jeffrey H., 2013, Revision of Nearctic <i> Dasysyrphus </ i> Enderlein (Diptera: Syrphidae), Zootaxa 3660 (1), pp. 1-80
: 32-34
|
32-34 |
Neuroptera
|
|
|
Lonsdale, Owen & Locke, Michelle M., 2018, Name-bearing type specimens in the Canadian National Collection of Insects, Arachnids & Nematodes (CNC): Blattodea, Dermaptera, Notoptera, Mecoptera, Megaloptera, Myriapoda, Neuroptera, Odonata, Orthoptera, Phthiraptera, Pseudoscorpiones, Psocoptera, Raphidioptera & Siphonaptera, Zootaxa 4526 (2), pp. 101-126
: 108-110
|
108-110 |
Brachymelecta californica
|
|
|
Onuferko, Thomas M., Packer, Laurence & Genaro, Julio A., 2021, Brachymelecta Linsley, 1939, previously the rarest North American bee genus, was described from an aberrant specimen and is the senior synonym for Xeromelecta Linsley, 1939, European Journal of Taxonomy 754, pp. 1-51
: 13-23
|
13-23 |
Altovectura arizonensis
|
|
sp. nov.
|
Mayor, Adriean J. & Gimmel, Matthew L., 2024, Two New Genera and Three New Species of Dasytinae (Coleoptera: Melyridae) from the Southwestern United States and Mesoamerica, The Coleopterists Bulletin 78 (1), pp. 33-52
: 40-42
|
40-42 |
Leiobunum silum
|
|
sp. nov.
|
Shultz, Jeffrey W., 2018, A new species of Leiobunum from Arizona, U. S. A. highlights the limits of typological classification in harvestmen (Opiliones: Sclerosomatidae: Leiobuninae), Zootaxa 4370 (1), pp. 67-75
: 69-74
|
69-74 |
Serropalpus substriatus
|
|
|
Johnston, M. Andrew, Warner, William B. & Pollock, Darren A., 2024, New Records and a Checklist of Melandryidae and Tetratomidae Known from Arizona, USA (Coleoptera: Tenebrionoidea), The Coleopterists Bulletin 78 (1), pp. 53-60
: 55
|
55 |
Charadra oligarchia
|
|
|
Schmidt, Christian & Anweiler, Gary, 2010, The North American species of Charadra Walker, with a revision of the Charadra pata (Druce) group (Noctuidae, Pantheinae), ZooKeys 39 (39), pp. 161-181
: 166-172
|
166-172 |
Microtonus elongatus
|
|
|
Johnston, M. Andrew, Warner, William B. & Pollock, Darren A., 2024, New Records and a Checklist of Melandryidae and Tetratomidae Known from Arizona, USA (Coleoptera: Tenebrionoidea), The Coleopterists Bulletin 78 (1), pp. 53-60
: 54
|
54 |
Ptilothrix chiricahua
|
|
sp. nov.
|
Florez-Gomez, Nathalia & Danforth, Bryan, 2023, The North American bees of the genus Ptilothrix Cresson, 1878 (Hymenoptera, Apidae, Emphorini), with the description of two new species, Journal of Hymenoptera Research 95, pp. 275-293
: 275
|
275 |
Paramyia nigritarsi
|
|
sp. nov.
|
Levesque-Beaudin, Valerie & Mlynarek, Julia J., 2020, Revision of Nearctic Paramyia Williston (Diptera: Milichiidae), Zootaxa 4732 (1), pp. 1-56
: 24-27
|
24-27 |
Pseudomarimatha flava
|
|
sp. nov.
|
Ferris, Clifford & Lafontaine, Donald, 2010, Review of the North American species of Marimatha Walker with descriptions of three new species (Lepidoptera, Noctuidae, Eustrotiinae) and the description of Pseudomarimatha flava (Noctuinae, Elaphriini), a new genus and species confused with Marimatha, ZooKeys 39 (39), pp. 117-135
: 133-134
|
133-134 |
Agrostis scabra
|
|
|
Vigosa-Mercado, J. Luis, Delgado-Salinas, Alfonso, Alvarado Cardenas, Leonardo O. & Eguiarte, Luis E., 2023, Revision of the genus Agrostis (Poaceae, Pooideae, Poeae) in Megamexico, PhytoKeys 230, pp. 157-256
: 157
|
157 |
Marimatha squala
|
|
sp. nov.
|
Ferris, Clifford & Lafontaine, Donald, 2010, Review of the North American species of Marimatha Walker with descriptions of three new species (Lepidoptera, Noctuidae, Eustrotiinae) and the description of Pseudomarimatha flava (Noctuinae, Elaphriini), a new genus and species confused with Marimatha, ZooKeys 39 (39), pp. 117-135
: 124-126
|
124-126 |
Acmaeodera scalaris
|
|
|
Westcott, Richard L. & Raschko, Mike, 2018, New plant associations for adults of some species of Acmaeodera Eschscholtz (Coleoptera: Buprestidae) occurring in the western United States, Insecta Mundi 644, pp. 1-3
: 3
|
3 |
Metaparia prosopis
|
|
sp. nov.
|
Sublett, Clayton A. & Cook, Jerry L., 2021, A Comprehensive Revision of the Genus Metaparia Crotch, 1873 (Coleoptera: Chrysomelidae: Eumolpinae) and Description of a New Genus, The Coleopterists Bulletin 75 (4), pp. 779-811
: 799-801
|
799-801 |
Ectrichodiinae
|
|
|
Clem, C. Scott, Swanson, Daniel R. & Ray, Charles H., 2019, The Reduviidae (Hemiptera: Heteroptera) of Alabama, with a morphological key to species, Zootaxa 4688 (2), pp. 151-198
: 173
|
173 |
Lasioglossum (Dialictus) julipile
|
|
sp. nov.
|
Gardner, Joel & Gibbs, Jason, 2020, The ‘ red-tailed’ Lasioglossum (Dialictus) (Hymenoptera: Halictidae) of the western Nearctic, European Journal of Taxonomy 725, pp. 1-242
: 105-111
|
105-111 |
Triepeolus mexicanus
|
|
|
Onuferko, Thomas M. & Rightmyer, Molly G., 2024, A revision of the simplex species group of the cleptoparasitic bee genus Triepeolus Robertson, 1901 (Hymenoptera: Apidae), European Journal of Taxonomy 950 (1), pp. 1-106
: 40-47
|
40-47 |