Clytia linearis ( Thornely, 1904 )
publication ID |
https://doi.org/10.1080/00222933.2022.2068387 |
DOI |
https://doi.org/10.5281/zenodo.7012508 |
persistent identifier |
https://treatment.plazi.org/id/03A1BD34-FFCF-FFA7-89F2-FC481486F9C6 |
treatment provided by |
Plazi (2022-08-20 10:45:36, last updated 2024-11-27 14:29:45) |
scientific name |
Clytia linearis ( Thornely, 1904 ) |
status |
|
Clytia linearis ( Thornely, 1904) View in CoL
( Figure 5e, f View Figure 5 )
Obelia linearis Thornely, 1904: 453 View in CoL , pl. 44, fig. 6.
Type locality
Papua New Guinea: New Britain, Blanche Bay ( Thornely 1904, as Obelia linearis ) .
Material examined
Chatham Bay, 5.55271, −87.03826, 1 colony, 6 mm high, without gonothecae, coll. I. Keith, #240566. –Wafer Bay, 5.54556, −87.06221, 25 colony fragments, to 1.1 cm high, with gonothecae, coll. G. Ashton, #240607. –Chatham Bay, 5.55271, −87.03826, 3 colony fragments, to 1.1 cm high, with gonothecae, coll. I. Keith, #307693. –Chatham Bay, 5.55236, −87.04173, 8 colony fragments, to 1 cm high, without gonothecae, coll. I. Keith, #307703. –Chatham Bay, dock 004, no coordinates, 1 colony, on Macrorhynchia philippina , 7 mm high, without gonothecae, coll. G. Ashton, #266335. –Chatham Bay, dock 004, no coordinates, 4 colony fragments, to 1.3 cm high, without gonothecae, coll. G. Ashton, #266338.
Remarks
Hydroids of Clytia linearis are distinctive in having inward-folding pleats extending from the tip of each hydrothecal cusp to the distal wall of the hydrotheca ( Lindner and Migotto 2002). Colonies of the species are also usually erect and sympodially branched, and hydrothecae are particularly large and deep ( Cunha et al. 2020). Molecular studies indicate that C. linearis has a close relationship to such well-known species as C. hemisphaerica ( Linnaeus, 1767) and C. gracilis (M. Sars, 1851) ( Govindarajan et al. 2006; Leclere et al. 2009; Maronna et al. 2016; Cunha et al. 2020).
Subjective synonyms of C. linearis in the Tropical Eastern Pacific include Obelia striata Clarke, 1907 from Panama ( Rees and Vervoort 1987; Calder 1991), as well as Clytia acutidentata Fraser, 1938a from the Galápagos Islands and Mexico, C. carinadentata Fraser, 1938a from the Galápagos, and Gonothyraea serialis Fraser, 1938a from Colombia and Panama ( Calder 1991; Calder et al. 2009). While all of these were originally described from small colonies, they share the most distinctive character of the species in having a pleat running from the apex of each marginal cusp to the distal wall of the hydrotheca.
Lindner and Migotto (2002) followed the complete life cycle of C. linearis in laboratory cultures. Although medusae liberated from hydroids were reared to maturity, adults could not be linked with certainty to a known medusa species. Newly liberated medusae were similar in morphology to those described in other species of the genus Clytia Lamouroux, 1812 . Schuchert and Collins (2021) have now identified and figured mature medusae of C. linearis , identified by DNA barcoding, from the Gulf Stream off Florida.
In the tropical and subtropical eastern Pacific, C. linearis has been reported from Rocas Alijos, west of Baja California ( Calder 1996), and the Gulf of California (MendozaBecerril et al. 2020; Estrada-González et al. 2022) to Salinas, Ecuador (Calder et al. 2021) and the Galápagos Islands offshore ( Calder et al. 2003, 2019, 2021). The species has been considered essentially circumglobal in distribution ( Medel and Vervoort 2000; Lindner and Migotto 2002), and phylogenetic analyses have confirmed that it is widely distributed ( Lindner et al. 2011; Cunha et al. 2017, 2020). Particular notice has been taken of its occurrence on certain species of shelled pteropods (e.g. Clarke 1907, as O. striata ; Kramp, 1921, as Laomedea striata ; Stechow 1925, as Clytia striata ; Vervoort 1946, as L. striata ; Millard 1975, as C. gravieri ( Billard, 1904; Cornelius 1982)), which may contribute to long-range transport of the species. This said, the presence of C. linearis in port and bay fouling communities here, as well as on the Ecuador mainland and in the Galapagos Islands (Calder et al. 2021), leads to its interpretation as an entirely naturally distributed complex, and we thus regard it as cryptogenic in Cocos, in line with our previous categorisation for the Galapagos (Calder et al. 2021). The genetic similarity among its populations around the world further suggests relatively fluid gene flow, more likely to be achieved by ships moving between oceans than by the far more limited interoceanic movement of pteropods.
Reported distribution
Cocos Island: first record.
Elsewhere: taken to be circumglobal in tropical and warm-temperate waters ( Medel and Vervoort 2000; Lindner and Migotto 2002; Calder et al. 2019, 2021).
Billard A. 1904. Hydroides recoltes par M. Ch. Gravier dans le Golfe de Tadjourah. Bulletin du Museum d'Histoire Naturelle. 10: 480 - 485.
Calder DR. 1991. Shallow-water hydroids of Bermuda. The Thecatae, exclusive of Plumularioidea. Royal Ontario Museum. Life Sci Contrib. 154: 1 - 140.
Calder DR. 1996. Hydroids from Rocas Alijos. In: Schmieder RW, editor. Rocas Alijos. Scientific Results from the Cordell Expeditions. Dordrecht: Kluwer Academic Publishers; p. 257 - 261. doi: 10.1007 / 978 - 94 - 017 - 2917 - 8 _ 18
Calder DR, Mallinson JJ, Collins K, Hickman CP. 2003. Additions to the hydroids (Cnidaria) of the Galapagos, with a list of species reported from the islands. J Nat Hist. 37: 1173 - 1218. doi: 10.1080 / 00222930110116039
Calder DR, Vervoort W, Hochberg FG. 2009. Lectotype designations of new species of hydroids (Cnidaria, Hydrozoa), described by C. M. Fraser, from Allan Hancock Pacific and Caribbean Sea Expeditions. Zool Mededelingen. 83: 919 - 1058.
Calder DR, Carlton JT, Larson K, Mallinson JJ, Choong HHC, Keith I, Ruiz GM. 2019. Hydroids (Cnidaria, Hydrozoa) from marine fouling assemblages in the Galapagos Islands, Ecuador. Aquat Invasions. 14: 21 - 58. doi: 10.3391 / ai. 2019.14.1.02
Clarke SF. 1907. Reports on the scientific results of the expedition to the eastern tropical Pacific, in charge of Alexander Agassiz, by the U. S. Fish Commission Steamer Albatross , from October, 1904, to March, 1905, Lieut. - Commander L. M. Garrett, U. S. N., commanding. VIII. The hydroids. Mem Mus Comp Zool Harvard Coll. 35 (1): 1 - 18.
Cornelius PFS. 1982. Hydroids and medusae of the family Campanulariidae recorded from the eastern North Atlantic, with a world synopsis of genera. Bull Br Mus (Nat Hist) Zool. 42: 37 - 148.
Cunha AF, Collins AG, Marques AC. 2017. Phylogenetic relationships of Proboscoida Broch, 1910 (Cnidaria, Hydrozoa): are traditional morphological diagnostic characters relevant for the delimitation of lineages at the species, genus, and family levels? Mol Phylogenet Evol. 106: 118 - 135. doi: 10.1016 / j. ympev. 2016.09.012
Cunha AF, Collins AG, Marques AC. 2020. When morphometry meets taxonomy: morphological variation and species boundaries in Proboscoida (Cnidaria: Hydrozoa). Zool J Linn Soc. 190: 417 - 447. doi: 10.1093 / zoolinnean / zlz 166
Estrada-Gonzalez M, Aguero J, Mendoza-Becerril M. 2022. Medusozoans from the Mexican Pacific: a review of historical and current research. J Nat Hist. 56.
Fraser CM. 1938 a. Hydroids of the 1934 Allan Hancock Pacific Expedition. Allan Hancock Pac Expeditions. 4 (1): 1 - 105.
Govindarajan AF, Boero F, Halanych KM. 2006. Phylogenetic analysis with multiple markers indicates repeated loss of the adult medusa stage in Campanulariidae (Hydrozoa, Cnidaria). Mol Phylogenet Evol. 38: 820 - 834. doi: 10.1016 / j. ympev. 2005.11.012
Kramp PL. 1921. Kinetocodium danae n. g., n. sp. a new gymnoblastic hydroid, parasitic on a pteropod. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening i KjObenhavn. 74: 1 - 21.
Lamouroux JVF. 1812. Extrait d'un memoire sur la classification des polypiers coralligenes non entierement pierreux. Nouveau Bulletin des Sciences, par la Societe Philomatique de Paris. 3: 181 - 188.
Leclere L, Schuchert P, Cruaud C, Couloux A, Manuel M. 2009. Molecular phylogenetics of Thecata (Hydrozoa, Cnidaria) reveals long-term maintenance of life history traits despite high frequency of recent character changes. Syst Biol. 58: 509 - 526. doi: 10.1093 / sysbio / syp 044
Lindner A, Migotto AE. 2002. The life cycle of Clytia linearis and Clytia noliformis: metagenic campanulariids (Cnidaria: Hydrozoa) with contrasting polyp and medusa stages. J Mar Biol Assoc U K. 82: 541 - 553. doi: 10.1017 / S 0025315402005866
Lindner A, Govindarajan AF, Migotto AE. 2011. Cryptic species, life cycles, and the phylogeny of Clytia (Cnidaria: Hydrozoa: Campanulariidae). Zootaxa. 2980: 23 - 36. doi: 10.11646 / zootaxa. 2980.1.2
Linnaeus C. 1767. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Pars II. Editio duodecima, reformata. Holmiae: Laurentii Salvii. p. 533 - 1317. doi: 10.5962 / bhl. title. 156772
Maronna MM, Miranda TP, Cantero AL P, Barbeitos MS, Marques AC. 2016. Towards a phylogenetic classification of Leptothecata (Cnidaria, Hydrozoa). Sci Rep. 6: 18075. doi: 10.1038 / srep 18075
Medel MD, Vervoort W. 2000. Atlantic Haleciidae and Campanulariidae (Hydrozoa, Cnidaria) collected during the CANCAP and Mauritania-II expeditions of the National Museum of Natural History, Leiden, The Netherlands. Zool Verhandelingen. 330: 1 - 68.
Millard NAH. 1975. Monograph on the Hydroida of Southern Africa. Ann S Afr Mus. 68: 1 - 513.
Rees WJ, Vervoort W. 1987. Hydroids from the John Murray Expedition to the Indian Ocean, with revisory notes on Hydrodendron, Abietinella, Cryptolaria and Zygophylax (Cnidaria, Hydrozoa). Zool Verhandelingen. 237: 1 - 209.
Sars M. 1851. Beretning om en i Sommeren 1849 foretagen zoologisk Reise i Lofoten og Finmarken. Nyt Mag Naturvidenskaberne. 6: 121 - 211.
Schuchert P, Collins R. 2021. Hydromedusae observed during night dives in the Gulf Stream. Rev Suisse Zool. 128: 237 - 356. doi: 10.35929 / RSZ. 0049
Stechow E. 1925. Hydroiden der Deutschen Tiefsee-Expedition. In: Wissenschaftliche Ergebnisse der Deutschen Tiefsee-Expedition auf dem Dampfer Valdivia 1898 - 1899. Vol. 17; p. 383 - 546. Jena: Gustav Fischer.
Thornely LR. 1904. Report on the Hydroida collected by Professor Herdman, at Ceylon, in 1902, and Herdman WA, editor. Report to the Government of Ceylon on the pearl oyster fisheries of the Gulf of Manaar, with supplementary reports upon the marine biology of Ceylon, by other naturalists, part 2. p. 107 - 126. London: The Royal Society.
Vervoort W. 1946. Exotic hydroids in the collections of the Rijksmuseum van Natuurlijke Historie and the Zoological Museum at Amsterdam. Zool Mededelingen. 26: 287 - 351.
Figure 5. Leptothecata: Phialellidae, Cirrholovenia, Clytiidae. (a) Phialellidae (undetermined): three hydrothecae and pedicels, #240565. (b) Cirrholovenia tetranema: two hydrothecae and stolons, and a nematotheca, #240629. (c) Clytia brevithecata: hydrotheca and distal end of pedicel, #240600. (d) Clytia brevithecata: proximal end of pedicel and stolon, #240600. (e) Clytia linearis: hydrotheca and distal end of pedicel, #307693. (f) Clytia linearis: gonotheca, #307693. (g) Clytia obliqua: hydrotheca and distal end of pedicel, #240629.(h) Clytia obliqua: hydrotheca and distal end of pedicel,#253541. (i) Clytia obliqua: gonotheca, #253541. (j) Clytia obliqua: gonotheca, #240629. Scale bars: a, c–j = 0.1 mm; b = 0.05 mm.
No known copyright restrictions apply. See Agosti, D., Egloff, W., 2009. Taxonomic information exchange and copyright: the Plazi approach. BMC Research Notes 2009, 2:53 for further explanation.
Kingdom |
|
Phylum |
|
Class |
|
SubClass |
Hydroidolina |
Order |
|
Family |
|
Genus |
Clytia linearis ( Thornely, 1904 )
Calder, Dale R., Carlton, James T., Keith, Inti, Ashton, Gail V., Larson, Kristen, Ruiz, Gregory M., Herrera, Esteban & Golfin, Geiner 2022 |
Obelia linearis
Thornely LR 1904: 453 |