-105.96113, 36.207523: 10 Treatments

[ link ]

Dasysyrphus creper     Locke, Michelle M. & Skevington, Jeffrey H., 2013, Revision of Nearctic <i> Dasysyrphus </ i> Enderlein (Diptera: Syrphidae), Zootaxa 3660 (1), pp. 1-80 : 32-34 32-34
Pseudepipona aldrichi   stat. nov.  Fateryga, Alexander V., 2022, Revision of the Pseudepipona herrichii-group of the eumenine wasps (Hymenoptera: Vespidae: Eumeninae) with the description of two new species from China and Russia, Zootaxa 5154 (2), pp. 101-126 : 104-107 104-107
Lasioglossum (Dialictus) hudsoniellum     Gardner, Joel & Gibbs, Jason, 2020, The ‘ red-tailed’ Lasioglossum (Dialictus) (Hymenoptera: Halictidae) of the western Nearctic, European Journal of Taxonomy 725, pp. 1-242 : 90-99 90-99
Dasysyrphus richardi   sp. nov.  Locke, Michelle M. & Skevington, Jeffrey H., 2013, Revision of Nearctic <i> Dasysyrphus </ i> Enderlein (Diptera: Syrphidae), Zootaxa 3660 (1), pp. 1-80 : 64-66 64-66
Lasioglossum (Dialictus) lilianae   sp. nov.  Gardner, Joel & Gibbs, Jason, 2020, The ‘ red-tailed’ Lasioglossum (Dialictus) (Hymenoptera: Halictidae) of the western Nearctic, European Journal of Taxonomy 725, pp. 1-242 : 118-125 118-125
Aphaenogaster texana     Shattuck, Steve & Cover, Stefan, 2016, Taxonomy of some little-understood North American ants (Hymenoptera: Formicidae), Zootaxa 4175 (1), pp. 10-22 : 14 14
Cryptophagus jemezmontanus   sp. nov.  Esser, Jens, R, Nearctic, Usa & M, New, 2018, New Cryptophagus HERBST, 1792 (Coleoptera: Cryptophagidae) from New Mexico (United States of America), Linzer biologische Beiträge 50 (2), pp. 1073-1078 : 1075 1075
Pheneus opacus     Bueno, Gabriel M., Kehlmaier, Christian & Santos, Charles Morphy D., 2021, A worldwide catalog of the Vermileonidae (Diptera: Brachycera), Zootaxa 5060 (4), pp. 489-514 : 502 502
Laemosaccus rileyi   sp. nov.  Hespenheide, Henry A., 2019, A Review of the Genus Laemosaccus Schönherr, 1826 (Coleoptera: Curculionidae: Mesoptiliinae) from Baja California and America North of Mexico: Diversity and Mimicry, The Coleopterists Bulletin (MIMICRY AND LAEMOSACCUS In an earlier paper (Hespenheide 1996), I presented the hypothesis that species of Laemosaccus of the L. nephele group with red humeral spots on the elytra were Batesian mimics of members of the Chrysomelidae in the subfamily Clytrinae. There is no evidence that Laemosaccus species are distasteful, and what is either L. nephele and / or L. obrieni have been reported as prey items of birds (Beal 1912). In Cave Creek Canyon, Cochise County, Arizona, 21 forms (species and “ subspecies ”) of Clytrinae were hypothesized to be the primary models of 22 species of mimics in the families Anthribidae (one species), Bruchidae (two species), Buprestidae (four species), Chrysomelidae, subfamily Cryptocephalinae (three species), Coccinellidae (six species), Curculionidae, subfamily Baridinae (one species), and Laemosaccus (five species). Of these, the coccinellids and the cryptocephaline chrysomelids are probably distasteful Mullerian co-mimics. Ecologically, the species of Laemosaccus co-occurred with their clytrine models on both desert legumes and canyon oaks, although more clytrine species occurred in the desert and more Laemosaccus species occurred in the canyons. Species of clytrines showing the mimetic pattern are common throughout Mexico (Bellamy 2003, who renamed the Mexican buprestid genus Acherusia Laporte and Gory, 1837 as Mimicoclytrina Bellamy to reflect their resemblance to clytrines), but decline in numbers of species and in the proportion of the clytrine fauna through Central America to Panama (Hespenheide 1996, fig. 2). Laemosaccus seems to follow a similar pattern. Mimicry is more common in large faunas, especially in wet tropical areas (Hespenheide 1986, 1995); because the largest clytrine fauna is in Mexico, the clytrine mimicry complex is also larger there (Hespenheide 1996). This complex has more members than I first enumerated and deserves further study. The evolution of mimicry produces resemblances between unrelated species (Laemosaccus and other putative mimics, with clytrines and perhaps other Chrysomelidae and Coccinellidae as models; see Hespenheide 1976, 1996) and selects against the divergence of related species. In Batesian mimicry - hypothesized to be the form of relationship between Laemosaccus and clytrines - the selection for precision of mimicry is stronger on the mimic (Laemosaccus), so that resemblances among them should be closer, regardless of ancestry. Close morphological resemblances based on ecology rather than ancestry may be termed mimetic homoplasy (Hespenheide 2005) and can make recognition of species difficult (as in Laemosaccus) or complicate phylogenetic analyses. I have speculated (Hespenheide 1996) that the sympatric “ subspecies ” of the clytrine models (Moldenke 1970) may in fact be reproductively isolated sibling species. It will be interesting to see whether or not genomic studies show the closeness of relationships among Laemosaccus species that the morphology suggests) 73 (4), pp. 905-939 : 930-931 930-931
Laemosaccus bimaculatus   sp. nov.  Hespenheide, Henry A., 2019, A Review of the Genus Laemosaccus Schönherr, 1826 (Coleoptera: Curculionidae: Mesoptiliinae) from Baja California and America North of Mexico: Diversity and Mimicry, The Coleopterists Bulletin (MIMICRY AND LAEMOSACCUS In an earlier paper (Hespenheide 1996), I presented the hypothesis that species of Laemosaccus of the L. nephele group with red humeral spots on the elytra were Batesian mimics of members of the Chrysomelidae in the subfamily Clytrinae. There is no evidence that Laemosaccus species are distasteful, and what is either L. nephele and / or L. obrieni have been reported as prey items of birds (Beal 1912). In Cave Creek Canyon, Cochise County, Arizona, 21 forms (species and “ subspecies ”) of Clytrinae were hypothesized to be the primary models of 22 species of mimics in the families Anthribidae (one species), Bruchidae (two species), Buprestidae (four species), Chrysomelidae, subfamily Cryptocephalinae (three species), Coccinellidae (six species), Curculionidae, subfamily Baridinae (one species), and Laemosaccus (five species). Of these, the coccinellids and the cryptocephaline chrysomelids are probably distasteful Mullerian co-mimics. Ecologically, the species of Laemosaccus co-occurred with their clytrine models on both desert legumes and canyon oaks, although more clytrine species occurred in the desert and more Laemosaccus species occurred in the canyons. Species of clytrines showing the mimetic pattern are common throughout Mexico (Bellamy 2003, who renamed the Mexican buprestid genus Acherusia Laporte and Gory, 1837 as Mimicoclytrina Bellamy to reflect their resemblance to clytrines), but decline in numbers of species and in the proportion of the clytrine fauna through Central America to Panama (Hespenheide 1996, fig. 2). Laemosaccus seems to follow a similar pattern. Mimicry is more common in large faunas, especially in wet tropical areas (Hespenheide 1986, 1995); because the largest clytrine fauna is in Mexico, the clytrine mimicry complex is also larger there (Hespenheide 1996). This complex has more members than I first enumerated and deserves further study. The evolution of mimicry produces resemblances between unrelated species (Laemosaccus and other putative mimics, with clytrines and perhaps other Chrysomelidae and Coccinellidae as models; see Hespenheide 1976, 1996) and selects against the divergence of related species. In Batesian mimicry - hypothesized to be the form of relationship between Laemosaccus and clytrines - the selection for precision of mimicry is stronger on the mimic (Laemosaccus), so that resemblances among them should be closer, regardless of ancestry. Close morphological resemblances based on ecology rather than ancestry may be termed mimetic homoplasy (Hespenheide 2005) and can make recognition of species difficult (as in Laemosaccus) or complicate phylogenetic analyses. I have speculated (Hespenheide 1996) that the sympatric “ subspecies ” of the clytrine models (Moldenke 1970) may in fact be reproductively isolated sibling species. It will be interesting to see whether or not genomic studies show the closeness of relationships among Laemosaccus species that the morphology suggests) 73 (4), pp. 905-939 : 918-920 918-920