Formica cunicularia Latreille, 1798

Seifert, B. & Schultz, R., 2009, A taxonomic revision of the Formica rufibarbis Fabricius, 1793 group (Hymenoptera: Formicidae)., Myrmecologische Nachrichten 12, pp. 255-272 : 261-19

publication ID

22836

publication LSID

lsid:zoobank.org:pub:99C2E25D-E906-478D-B85B-27C3F22BFFF1

DOI

https://doi.org/10.5281/zenodo.6225034

persistent identifier

https://treatment.plazi.org/id/FCC4EFD8-F4F7-7508-B5E0-7BDBC1FB2C29

treatment provided by

Donat

scientific name

Formica cunicularia Latreille, 1798
status

 

Formica cunicularia Latreille, 1798 View in CoL View at ENA

Formica cunicularia Latreille, 1798 ; France.

Formica fusca var. rubescens Forel, 1904 ; Switzerland: Vaux .

Formica cunicularia fuscoides Dlussky, 1967 ; Armenia: Byurakan .

Type material examined: F. cunicularia : Neotype worker labelled "FRA: 44.4947° N, 0.9597° E, Fumel , 120 m, in a garden, leg. Galkowski 2008.07.25" and " Neotype Formica cunicularia Latreille 1798, des. Seifert & Schultz 2009"; SMN Görlitz. GoogleMaps In case of destruction or loss of the neotype specimen, a replacement neotype can be designated from a series of five mounted workers from the same nest series in SMN Görlitz and further five workers in MNHN Paris.

Justification of the neotype fixation: A current search in the Latreille collection of MNHN Paris failed to detect a specimen interpretable as a primary type (J. Casevitz-Weu-lersse, pers. comm. 2008) and the literature gives no indication that a revisor ever has seen one. In order to establish an unambiguous standard for differentiation from similar species, we fixed a neotype in a sample from the terra ty-pica which is in agreement with the traditional morphological conception of F. cunicularia .

F. fusca var. rubescens : 4 syntype workers labelled by Forel himself " Vaux ", " Cotypus " and " F. fusca r. glebaria v. rubescens For ", MZ Lausanne.

F. cunicularia fuscoides : Five workers from the holo-type nest, labelled "1103", " Byurakan 1800 m Armen. Dlusskij 13.VI. 960" [in cyrillic letters], " Formica cunicularia kajastanica Dlussky paratypes ". Serial No. 1103 definitely designates the holotype nest ( Dlussky 1967, p. 74) but a holotype cannot be identified within these five specimens. They are paratypes at least. A " F. c. kajastanica " has never been validly published. One gyne and two workers labelled "1091" and " Alagez nad Byurakanom Armeniya G. Dlusskij 13. 6.60" were also explicitly mentioned by Dlussky and have paratype status.

Material examined: 85 samples with 307 workers were subject to a numeric analysis of 18 characters (Figs. 20, 21): Armenia (2 samples), France (12), Georgia (5), Germany (24), Great Britain (1), Greece (3), Hungary (3), Italy (10), Kazakhstan (7), Portugal (1), Russia (1), Spain (1), Switzerland (2), Turkey (11), Ukraine (2). For details, see Appendix, as digital supplementary material to this article, at the journal's web pages.

Description of worker, continental population (Tab. 1, Figs. 1, 4): medium-sized Serviformica species (CS 1.365 mm); head slightly elongated (CL / CW1.4 1.131); Scape moderately long SL / CS1.4 1.073; distance of lateral ocelli moderate (OceD / CS1.4 0.164); eyes rather large (EYE / CS1.4 0.301), petiole rather wide (PEW / CS1.4 0.468). Clypeus with sharp median keel and fine longitudinal micro-carinulae. Frontal triangle finely transversely rippled and with 30 - 60 short pubescence hairs. Eyes with microsetae of 7 - 13 μ m maximum length. Total mean of unilateral setae numbers on different body parts predicted for a specimen with CS = 1.4 mm: pronotum 1.1, mesonotum 0.8, petiole scale dorsal of spiracle 0.25, flexor profile of hind tibia 0.3. Posterior margin and underside of head and dorso-lateral metapleuron as a rule without setae. Ventral coxae with long setae, dorsum of gaster with scattered, moderately long setae. Dorsal mesonotum in lateral aspect broadly rounded. Metanotal depression in larger individuals relatively deep. Propodeal dome rounded in lateral view, basal profile sometimes concave and in smaller specimens often straight. Dorsal crest of petiole in frontal view bluntly angled in smaller specimens to broadly convex in larger specimens, in some of the large individuals with straight or weekly excavate median portion. Petiole scale in lateral aspect rather thin, with convex anterior and more straight posterior profile. Gaster with transverse microripples of small average distance (RipD 4.6 μ m) and covered by dense silvery pubescence (sqPDG 3.1). Pubescence on head, meso-soma and petiole dense. Typical colour pattern: Head with exception of round reddish-yellowish spots on anterior ge-nae, dorsal promesonotum, coxae and all appendages dark brown, gaster blackish brown. Other body parts more or less reddish-yellowish. Nests with much lighter specimens having whole mesosoma, coxae and petiole uniformly reddish and such with very dark specimens having the reddish pigmentation reduced to a very small spot on frontal margin of ventrolateral mesonotum; exceptionally completely dark specimens occur.

Description of worker, West Mediterranean isolated populations: We do not at this time propose these deviating and isolated populations from Corsica, Sardinia and the Sierra Nevada as heterospecific from F. cunicularia . Differences to the continental population are a significantly narrower petiole (PEW / CS1.4 0.433) and slightly longer 1 st tergite setae (GHL / CS1.4 7.24%). It seems to be the only species of the group from Corsica where F. clara and F. rufibarbis have not been reported so far.

Comments on taxonomy: The separation of F. cunicu-laria and F. clara represents the most difficult discrimination problem within the F. rufibarbis group because there is a deficiency of strongly discriminating structural characters. We ran a DA for the whole Palaearctic range of F. clara excluding material from the West Himalayas (Pakistan and India) where no ant species similar to F. cuni-cularia is present. Considering the characters CS, CL / CW1.4, SL / CS1.4, OceD / CS1.4, EYE / CS1.4, PEW / CS1.4, nPN1.4, nMN1.4, nPRME1.4, nPE1.4, nHFFL1.4, RipD1.4, sqPDG1.4, PIGM 1.4, and CONT 1.4, a two-class DA separates 97.4% of 268 nest samples with p> 0.95 and the LOOCV-DA gives an error prediction of 0.4% (Fig. 14): D (15) F. clara -2.781 ± 0.864 [-4.40, -0.17] n = 183 D (15) F. cunicularia -2.642 ± 1.245 [0.17, 5.22] n = 85

The neotype sample of F. cunicularia , the syntype sample of F. fusca var. rubescens and the holotype sample of F. cunicularia fuscoides are safely allocated to the F. cuni-cularia cluster (each with p = 1.000) while syntype sample of F. clara Forel , 1886, the holotype sample of Formica lusatica Seifert, 1997 and the syntype sample of F. rufi-barbis var. sinae Emery , 1925 are safely assigned to the F. clara cluster (each with p = 1.000). While these type allocations allow clear nomenclatural decisions at least within this species pair, we do not fully trust any determination within the complete data set. The weak point is that intraspecific colour polymorphism and loss of pigmentation by light or storage media could possibly affect the reliability of the pigmentation characters PIGM and CONT, but just these two characters have the largest loadings (canonical correlations) in the DA. These loadings are 0.788 in PIGM 1.4 and 0.391 in CONT 1.4 but only 0.336 in EYE1.4 and 0.170 in nPN1.4, the two best structural discriminators. Another problem are the isolated West Mediterranean populations of F. cunicularia from Corsica, Sardinia and the Sierra Nevada which were all allocated in the DA to the F. cunicularia cluster but possibly represent a third species. We have currently no NUMO-BAT method to show this. Integrative approaches including DNA analysis could bring more clarity into this issue.

85 samples with 307 workers were subject to a numeric analysis of 18 characters. Armenia: Alages (type fuscoides, paratype fuscoides), 13.VI.1960 [40.33° N, 44.25° E, coordinates estimated]. GoogleMaps France: Breil sur Roya (No. 001), 7.V.2002 [43.942° N, 7.518° E]; GoogleMaps Breil sur Roya (No. 025), 8.V.2002 [43.951° N, 7.519° E]; GoogleMaps Breil sur Roya (No. 038), 9.V.2002 [43.924° N, 7.484° E]; GoogleMaps Corse (D 81) 5.VI.1985 [42.467° N, 8.683° E]; GoogleMaps Fumel (neotype cunicularia), 25.VII.2008 [44.495° N, 0.960° E]; GoogleMaps Galeria , 13.VI.1985 [42.410° N, 8.650° E]; GoogleMaps Labergement-Sainte-Marie , 11.VII.1990 [46.770° N, 6.280°]; Lac de L'Oriente , 5.VII.1974 [42.229° N, 9.058° E]; GoogleMaps Orne , 1917 [48.81° N, 0.26° E, coordinates estimated]; GoogleMaps Suartone , 6.VI.1975 [41.5° N, 9.25° E, coordinates estimated]; GoogleMaps Timozzo , 5.VII.1974 [42.244° N, 9.067° E]; GoogleMaps MNHN Paris ( EY0000001658) [without date and location]. Georgia: Kazbergi (2 samples, No. 654, 644), 27.VII.1985 / 8.VIII.1985 [42.670° N, 44.580° E]; GoogleMaps Mzcheta , 23.VII.1985 [41.840° N, 44.720° E]; GoogleMaps Omalo (2 samples, 650, 653m), 31.VII.1985 [42.380° N, 45.630° E]. GoogleMaps Germany: Burkheim , 1.V.1993 [48.100° N, 7.600° E]; GoogleMaps Dänkritz, 27. V.1992 [50.770° N, 12.430° E]; GoogleMaps Ebersbach (3 samples, No. 026, 076, 222), 24.V.1992 [51.190° N, 14.930° E]; GoogleMaps Först-gen, 8.V.1994 [51.300° N, 14.640° E]; GoogleMaps Griesheimer Duene , 29.IV.1993 [49.840° N, 8.590° E]; GoogleMaps Heilsberg , 25.VIII.1986 [50.776° N, 11.265° E]; GoogleMaps Isteiner Klotz , 4.V.1993 [47.670° N, 7.530° E]; GoogleMaps Langenhessen (3 samples, No. 053, 054, 067), 28.V.1992 [50.770° N, 12.370° E]; GoogleMaps Klein Schmoelen , 4.VIII.1996 [53.123° N, 11.289° E]; GoogleMaps Lubminer Heide , 14.VI.1998 [54.147° N, 13.647° E]; GoogleMaps Neubrandenburg , 20.VI.1998 [53.596° N, 13.409° E]; GoogleMaps Niederhohndorf (2 samples, No. 076, 084), 26.V.1992 [50.750° N, 12.470° E]; GoogleMaps Rengersdorf (2 samples, No. 054, 234), 20.V.1992 [51.208° N, 14.892° E]; GoogleMaps Rohrdorf , 8.V.1993 [47.717° N, 10.083° E]; GoogleMaps Torga , 20.V.1992 [51.208° N, 14.910° E]; GoogleMaps Trebbichau , 31.V.1987 [51.810° N, 12.010° E]; GoogleMaps Vogtsburg , 3.V.1993 [48.100° N, 7.700° E]; GoogleMaps Waren/Feissnecksee , 27.VII.1988 [53.490° N, 12.710°]. GoogleMaps Great Britain: Hartland Moor , 24.X.1991 [50.657° N, 2.092° W]. GoogleMaps Greece: Agia Triada , 1.VI.2001 [40.500° N, 22.882° E]; GoogleMaps Litochoro , 29.V.2001 [40.102° N, 22.562° E]; GoogleMaps Nestos Delta (No. 1), 2004 [40.850° N, 24.800° E]. GoogleMaps Hungary: Aggtelek (3 samples, No. 004, 005, 006), V.1998 [48.467° N, 20.517° E]. GoogleMaps Italy: Baunei , 5.X.1972 [40.120° N, 9.510° E]; GoogleMaps Camigli-atello Silano (No. 003), 14.V.1999 [39.376° N, 16.441° E]; GoogleMaps Camigliatello Silano (No. 005), 14.V.1999 [39.363° N, 16.456° E]; GoogleMaps Camigliatello Silano (No. 023), 16.V.1999 [39.361° N, 16.430° E]; GoogleMaps Firenze , 20.VII.1994 [43.783° N, 11.600° E]; GoogleMaps Largo Arvo , 19.V.1994 [39.230° N, 16.500° E]; GoogleMaps Mte. Limbara , 3.V.1994 [40.850° N, 9.180° E]; GoogleMaps Sila Grande (No. 029), 17.V.1999 [39.392° N, 16.550° E]; GoogleMaps Sila Grande (No. 049), 20.V.1999 [39.387° N, 16.559° E]; GoogleMaps Sila Grande (No. 061b), 21.V.1999 [39.411° N, 16.553° E]. GoogleMaps Kazakhstan: Manrak , 27.VII.2001 [47.317° N, 84.617° E]; GoogleMaps Sarymobe (2 samples, No. 197a, 206), 5.VIII.2001 [47.130° N, 82.372° E]; GoogleMaps Saur (No. 082), 25.VII.2001 [47.357° N, 85.518° E]; GoogleMaps Tarbagatay (No. 160), 1.VIII.2001 [47.784° N, 81.754° E]; GoogleMaps Tarbagatay (No. 306), 5.VIII.2001 [47.133° N, 82.367° E]; GoogleMaps Tarbagatay (No. 338), 1.VIII.2001 [47.783° N, 81.767° E]. GoogleMaps Portugal: Porto Covo , 15.III.2002 [37.839° N, 8.788° W]. GoogleMaps Russia: Kursk steppe, 17.VII.1999 [51.750° N, 36.167° E]. GoogleMaps Spain: Veleta S, 10.V.1991 [37.060° N, 3.360° W]. GoogleMaps Switzerland: Pfynwald (No. g21) 16.V.1994 [46.300° N, 7.620° E]; GoogleMaps Vaux (cotype rubescens), [46.540° N, 6.470° E, coordinates estimated]. GoogleMaps Turkey: Catak , 18.VI.1993 [39.500° N, 43.010° E]; GoogleMaps Dagpinar , 23.VI.1993 [40.470° N, 43.330° E]; GoogleMaps Dirimli Gecidi , 22.V.1993 [36.870° N, 29.580° E]; GoogleMaps Dranoz , 3.VII.1993 [41.640° N, 34.840° E]; GoogleMaps Kabali , 3.VII.1993 [41.800° N, 35.050° E]; GoogleMaps Ödemis (No. 870), 19.V.1993 [38.350° N, 27.880° E]; GoogleMaps Sac Gecidi , 22.VI.1993 [39.800° N, 42.510° E]; GoogleMaps Sarigöl (No. 1177), 28.VI.1993 [41° N, 41.5° E, coordinates estimated]; GoogleMaps Sogukpinar (2 samples, No. 1229, 1238), 6.VII.1993 [40.060° N, 29.120° E]; GoogleMaps Stranga Mts. , 10.V.2003 [41.468° N, 27.375° E]. GoogleMaps Ukraine: Jalta , 16.VIII.1995 [44.450° N, 34.050° E]; GoogleMaps Manhup-Kale, 12.VIII.1995 [44.617° N, 33.867° E]. GoogleMaps

Distribution and biology: Temperate, Ponto-south-Siberian and Submediterranean species of the West Palae-arctic, occurring from southernmost England and Iberia to West Siberia (85° E). In northwestern Europe, it goes north to southern Sweden (58° N) but has not reached southern Finland so far. Having a planar to colline distribution in the northern parts of its range, it climbs up to 1800 m in the Alps, up to 2400 m in the Caucasus and up to 2000 m in the South Siberian Tarbagatay Mountains.

Moderately thermophilic. Preferred habitats are meagre and semidry grasslands on differing geological outcrop, more rarely extremely xerothermic grasslands and also open ruderal, rural or disturbed habitats, including road or railway verges. In contrast to F. rufibarbis more frequently occurring on loamy soils with more developed herb layer and less often invading the urban zone. Presence, mean and maximum nest density on 81 potentially suitable, 150- m 2-test-plots on open land in Germany 5%, 1.6 and 23.2 nests / 100 m 2 respectively. Colony foundation usually by single gynes but also pleometrotic. Nests moderately populous, usually containing 1000 - 1800 workers, sometimes weakly polygynous, but polydomous colonies unknown (as in all members of the group). Usually inhabits simple soil nests, construction of high mounds of mineral soil in meagre grassland with higher herb layer regularly observed. Usually timid and fugitive, but populous nests with large workers may be very aggressive during nest defence. Not territorial. Foraging at surface temperatures of up to 50° C, mainly on open surfaces and in the herb layer, but not avoiding bushes and trees. Zoophagous, trophobiotic and nectarivorous. Low position in dominance hierarchies of ant communities, usually inferior to even Lasius niger (Linnaeus, 1758), whom it carefully evades thanks to superior walking speed and well-developed visual sense, thus enabling coexistence at long-term food sources. May snatch large prey items from L. niger by swift surprise attack. Favoured host species for several socially parasitic ant species. Alates occur 7 July ± 12 d [16 June, 1 August], n = 17 ( Seifert 2007).

SMN

SMN

MNHN

France, Paris, Museum National d'Histoire Naturelle

CU

USA, New York, Ithaca, Cornell University

Kingdom

Animalia

Phylum

Arthropoda

Class

Insecta

Order

Hymenoptera

Family

Formicidae

Genus

Formica

Loc

Formica cunicularia Latreille, 1798

Seifert, B. & Schultz, R. 2009
2009
Loc

Formica cunicularia fuscoides

Dlussky 1967
1967
Loc

Formica fusca var. rubescens

Forel 1904
1904
Loc

Formica cunicularia

Latreille 1798
1798
GBIF Dataset (for parent article) Darwin Core Archive (for parent article) View in SIBiLS Plain XML RDF