Cyphocharax albiventris, Netto-Ferreira & Nogueira & Melo & Dutra, 2024
publication ID |
https://doi.org/ 10.1206/4007.1 |
persistent identifier |
https://treatment.plazi.org/id/E11F87A1-BA68-FF85-89D1-24ABFC75FD17 |
treatment provided by |
Felipe |
scientific name |
Cyphocharax albiventris |
status |
sp. nov. |
Cyphocharax albiventris , new species urn:lsid:zoobank.org:act:D8EF2CA2-D1D3-4107-BD82-1624EE3123FD Figure 1 View FIG ; table 2
HOLOTYPE: MPEG 35000 View Materials , 79.9 mm SL, Rio Xingu , Altamira, Pará, Brazil, 03°13′20̎ S 52°12′57 ̎W, 18 Jun 2012, R. Brito.
PARATYPES: All from Brazil, Amazon basin, Rio Xingu basin : ANSP 195031 About ANSP (1, 64.7 mm SL), Anapu, beach along the right bank near inlet to easternmost braid of Rio Xingu lower Volta Grande , 3°08′38̎ S 51°36′11 ̎W, 29 Sep 2013 , L.M. Sousa, A. Gonçalves, N.K. Lujan, D.B. Fitzgerald and P. M. Ito . ANSP 199638 About ANSP (2, 59.7–103.1 mm SL) , INPA 38029 View Materials (13, 57.1–93.4 mm SL), Altamira, Rio Iriri, ca. 8 km upstream from the con uence with Rio Xingu , 03°49′24̎ S 52°40′39 ̎W, 9 Oct 2012 , M.H. Sabaj, M. Arce, and L. Sousa. LBP 15950 (10), Mato Grosso, Canarana, Rio Culuene , 13°29′41.8̎ S 53°04′57.7 ̎W, 02 Aug 2012 , C. Oliveira, M. Taylor, G. Costa-Silva, J. Henriques. LBP 17690 (6), Pará, São Felix do Xingu, Rio Xingu , 06°39′32.5′′ S 52°00′24.5′′ W, 17 May 2013 , R. Britzke, M. Martins ; LIA 2314 View Materials (2, 45.3– 73.3 mm SL), São Felix Do Xingu, Serra do Pardo National Park , 05°46′42̎ S 52°36′53 ̎W, 17 May 2015 , A. Gonçalves, D. Silva . LIA 4061 View Materials (2, 61.3–61.6 mm SL), Altamira, right bank of Rio Xingu , 03°35′15̎S, 52°20′40̎W, 11 Oct 2013 , Monitoring team. LIA 5296 View Materials (1, 67.5 mm SL), Altamira, Rio Xingu , 03°13′20̎ S 52°12′57 ̎W, 19 Jun 2012 , R. Brito . LIA 5309 View Materials (1, 59.9 mm SL), Altamira, Rio Xingu , 03°13′20̎ S 52°12′57 ̎W, 23 Jun 2012 , R. Brito . LIA 5328 View Materials (1, 60.2 mm SL), Altamira , same data as holotype . MCNIP 1847 (1, 78.9 mm SL) Vitória do Xingu, Jericoá , 3°24′33̎ S 51°44′20 ̎W, 17 Jan 2013 , Monitoring team. MPEG 26403 View Materials (1, 71.1 mm SL), São Félix do Xingu, igarapé São Sebastião, Serra do Jacaré , 06°06′46̎ S 51°48′43 ̎W, 15 Jan 2013 , P. Azevedo. MPEG 28893 View Materials (1, 68.1 mm SL), Vitória do Xingu, Belo Monte , ca. 03°08′13̎ S 51°41′04 ̎W, 15 Jul 2012 , L.M. Sousa. MPEG 29510 View Materials (1, 60.5 mm SL) , MPEG 29584 View Materials (2, 66.6–72.0 mm SL) , MPEG 29642 View Materials (3, 53.2–56.2 mm SL) , MPEG 29648 View Materials (9, 56.5– 65.9 mm SL) . MPEG 29651 View Materials (4, 71.4–95.5 mm SL), Altamira, Rio Xingu, praia da Tartaruga , 03°35′03̎ S 52°20′30 ̎W, 4 Jul 2012 , L.M. Sousa. MPEG 29688 View Materials (1, 82.8 mm SL), Vitória do Xingu, Rio Bacajá, Pariaxá , 03°33′32̎S, 51°40′30̎W, 22 Sep 2012 , D.A. Bastos. MPEG 29724 View Materials (7, 64.9– 70.0 mm SL), Vitória do Xingu, Rio Xingu, ilha da Fazenda , 03°34′43̎ S 51°54′32 ̎W, 7 Jul 2012 , L.M. Sousa. MPEG 29731 View Materials (1, 68.6 mm SL), Altamira, Rio Iriri, cachoeira Grande , 03°50′37̎ S 52°44′07 ̎W, 14 Sep 2012 , L.M. Sousa. MPEG 29773 View Materials (1, 85.3 mm SL), Altamira, praia do Paratizinho ( Cajueiro ), 03°16′12.8̎ S 52°05′32.4 ̎W, 18 Sep 2012 , L.M. Sousa. MPEG 29931 View Materials (2, 70.9– 71.1 mm SL), Vitória do Xingu, Belo Monte site, ca. 03°08′13̎ S 51°41′04 ̎W, 15 Jul 2012 , L.M. Sousa. MPEG 29945 View Materials (1, 73.7 mm SL), Vitória do Xingu, Igarapé Belo Monte , 03°06′46̎ S 51°37′42 ̎W, 16 Jul 2012 , L.M. Sousa. MPEG 34997 View Materials (4, 72.8–96.6 mm SL) , MPEG 34998 View Materials (1, 75.3 mm SL) , MPEG 34999 View Materials (1, 79.0 mm SL), Altamira, Levi’s area , 03°35′15̎ S 52°20′40 ̎W, 16 Nov 2012 , Monitoring team. MPEG 35001 View Materials (1, 92.9 mm SL) , MPEG 35002 View Materials (1, 96.3 mm SL), Altamira, praia da Fumaça , 03°35′05̎ S 52°20′34 ̎W, 10 Jan 2013 , Monitoring team. MPEG 35003 View Materials (1, 86.9 mm SL), Altamira, praia do Paratizinho ( Cajueiro ), 03°16′13̎ S 52°05′32 ̎W, 14 Jan 2013 , Monitoring Team . MPEG 35004 View Materials (2 CS, 73.8–81.8 mm SL), Vitória do Xingu, praia da Mucura , 03 ° 23′42̎ S 51 ° 43′36 ̎W, 20 Oct 2013 , A. Gonçalves, T. Albuquerque, M. Mendonça .
NONTYPE SPECIMENS: All from Brazil, Rio Xingu. MPEG 29583 View Materials (1, 72.0 mm SL), Altamira , ilha Grande , 03°34′43̎ S 52°23′41 ̎W, 04 Jul 2012, L.M. Sousa. MPEG 29679 View Materials (1, 69.7 mm SL), Altamira, Itapuama, 03°36′57̎ S 52°20′53 ̎W, 3 Jul 2012, L.M. Sousa. MPEG 29748 View Materials (2, 75.2– 107.6 mm SL), Altamira, praia do Paratizinho (Cajueiro), 03°16′13̎ S 52°05′32 ̎W, 18 Sep 2012, L.M. Sousa. MPEG 29794 View Materials (1, 67.5 mm SL), Vitória do Xingu , Jericoá, 03°23′59̎ S 51°44′09 ̎W, 8 Jul 2012, L.M. Sousa. MPEG 35005 View Materials (3, 60.8–66.2 mm SL), Anapu, Rio Bacajá , praia Pariaxá, 03 ° 34′28̎ S 51 ° 35′45 ̎W, 19 Oct 2013, A. Gonçalves, J. Santos. Mato Grosso. MZUSP 89900 View Materials (10, 54.3–65.9 mm SL), Rio Culuene , Paranatinga, Mato Grosso, 13 ° 51′19̎ S 53 ° 15′15 ̎W, 15 Jan 2006, A. Akama and J. Birindelli .
DIAGNOSIS: Cyphocharax albiventris di ers from congeners, except Cy. leucostictus , Cy. platanus , and Cy. magdalenae , by the strongly countershaded body with the epidermis on scales below the lateral line series nearly hyaline, lacking dark chromatophores, and the abundant iridophores present on the dermis, along the lateroventral portion of body, resulting in silvery re ective pigmentation (vs. dorsal and ventral portions of the anks presenting similar pigmentation, with iridophores mostly restricted to head and base of scales). ffle new species can be diagnosed from Cy. leucostictus and Cy. magdalenae by the presence of a dark blotch on the caudal peduncle (vs. absence) and from Cy. platanus by the rounded shape of that blotch (vs. horizontally elongated blotch). Cyphocharax albiventris further di ers from other Cyphocharax by the following combination of characters: (1) 33–36 pored scales from the supracleithrum to the hypural joint (vs. 4–9 in Cy. aninha , 29–32 in Cy. meniscaprorus and Cy. oenas , 48–54 in Cy. platanus ); (2) ve scale rows between lateral line and anal- n origin (vs. 8–10 in Cy. platanus , and 6–7 in Cy. tamuya ); (3) 16 circumpeduncular scales (vs. 20 in Cy. naegelii , 23–25 in Cy. platanus , and 19–20 in Cy. tamuya ); (4) nine branched rays on dorsal n (vs. 10–12 in Cy. spilotus ); (5) 31–32 total vertebrae (vs. 29–30 in Cy. aninha , 33 in Cy. tamuya , and 34 in Cy. naegelii ); (6) absence of a eshy expansion of the upper lip overlapping lower jaw (vs. upper lip very eshy and overlapping lower jaw in Cy. mestomyllon ); (7) lower body depth (30.6%– 35.8% of SL vs. 36%–45% in Cy. gillii , and 38%–42% of SL in Cy. gouldingi ); (8) shorter head length (26.9%–29.6% of SL vs. 32%–36% of SL in Cy. oenas ); (9) lower caudal peduncle depth (10.9%–12.5% of SL vs. 14%–15% of SL in Cy. oenas ); and (10) slightly shorter pelvic- n length (19.4%–21.9% SL vs. 22%–27% in Cy. spiluropsis ).
DESCRIPTION: Morphometric data are presented in table 2. Body somewhat elongate. Greatest body depth at vertical through dorsal- n origin. Dorsal pro le of head strongly convex from margin of upper lip to vertical through anterior nostril, slightly concave to nearly straight from that point to supraoccipital spine. Dorsal pro le of body convex from tip of supraoccipital spine to dorsal- n terminus; slightly convex from that point to adipose- n origin and then slightly concave to origin of caudal- n upper lobe. Ventral pro le of body convex from lower lip to rear of anal n; concave from that point to origin of anteriormost ventral caudal- n procurrent ray. Prepelvic region smoothly attened transversely. Postpelvic region of body transversely rounded.
Head compressed, pointed overall in lateral view. Mouth subterminal, located at horizontal through ventral margin of orbit. Upper jaw slightly longer than lower jaw. Nostrils close together and separated by thin ap of skin. Anterior nostril circular, near midpoint between snout tip and anterior margin of eye. Posterior nostril crescent shaped. Adipose eyelid more developed anteriorly, with vertically ovoid opening near center of eye. Eye on anterior one-half of head length. Branchial membranes joined at isthmus. Branchiostegal rays 4(2).
Scales cycloid. Lateral-line pored scales from supracleithrum to hypural joint 33*(5), 34(24), 35(20) or 36(2), pores forming a straight laterosensory canal. Pored scales posterior to hypural joint 2(27) or 3*(24). Scales in transverse series from dorsal- n origin to lateral line 5*(31). Scales in transverse series from anal- n origin to lateral line 5*(31). Scales between anus and anal- n origin 1(3), 2*(27) or 3*(1). Middorsal series of scales from rear of supraoccipital spine to dorsal- n origin 10(2) or 11*(29). Circumpeduncular scales 16*(31). Scales covering basal portion of caudal- n rays distinctly smaller than those on posterior portion of caudal peduncle.
Pectoral n pointed, with i,13(1), i,14(8), i,15*(19), or i,16(3) rays; tip of adpressed pectoral n reaching vertical through eighth lateral line scale. Supraneurals 4(3) anterior to neural spine of h to eighth vertebrae. Dorsal n pointed, with ii,9*(31) rays; rst unbranched ray about one-half length of second unbranched ray, second unbranched and rst branched rays longest; branched rays gradually decreasing in size posteriorly. Dorsal- n pterygiophores 11*(3); rst inserted immediately posterior to neural spine of vertebra 8(1) or 9(2). Pelvic n emarginate, with i,8*(31) rays; n origin at vertical through third or fourth branched dorsal- n ray. Tip of adpressed pelvic n falling short of anus by one or two scales. Anal n emarginate, with ii,7*(31) rays; rst unbranched ray about one-third length of second unbranched ray; second unbranched ray and rst branched rays longer, subsequent branched rays gradually decreasing in size. Anal- n pterygiophores 8(1) or 9(2); rst inserted immediately posterior to haemal spine of vertebra 20(2) or 21(1) vertebrae. Adipose n present. Caudal n forked with lobes somewhat pointed, i,9/8,i*(11) rays. Dorsal caudal- n procurrent rays 7(3); ventral caudal- n procurrent rays 5(1) or 6(2). Total vertebrae 31(1) or 32(2). Precaudal vertebrae 20(3), caudal vertebrae 11(1) or 12(2).
COLORATION IN ALCOHOL: Overall coloration retaining guanine on scales silvery (g. 1). Background coloration of body tan. Dark coloration on dorsal portion of head, maxilla, upper lip, and infraorbital 1 lighter ventrally. Dark chromatophores on postorbital region of head slightly larger than those on snout. Overall pigmentation of latter portion of postorbital region consequently lighter than adjoining areas. Body strongly countershaded with integument on dorsum distinctly darker than skin on ventral portion of body, retaining abundant iridophores, resulting in silvery re ective pigmentation; specimens underwent extended periods in formalin showing distinctive contrast between dorsal and ventral portions of anks, due to lack of distinct melanophores. Scale rows above lateral line series with dark chromatophores concentrated near focus of each scale. Scales below lateral line almost hyaline, lacking dark chromatophores. Dark, round blotch onto midlateral scales and proximal portions of median caudal- n rays. Distal portions of dorsal n scattered by discrete, dark chromatophores. Distal border of adipose n outlined by small, dark chromatophores. Pectoral, pelvic, and anal ns hyaline overall.
DISTRIBUTION: Cyphocharax albiventris is widely distributed along the Rio Xingu basin from Rio Culuene to downstream Volta Grande and Belo Monte Dam (g. 2). ffle apparent disjunct distribution seems to be due to sampling gaps in protected areas such as indigenous territories and national parks and forests.
ETYMOLOGY: ffle speci c epithet albiventris is formed from the combination of Latin albus, “white,” and venter, “belly.” It refers to the strong deposition of guanine between dermis and hypaxial muscles that results in a whitish coloration in the ventrolateral surface of body.
RELATIONSHIPS AND SPECIES DELIMITATION: ffle maximum likelihood tree (best score: -68024.096354) resultant from the expanded molecular data matrix (available in the online supplement: https://doi.org/10.5531/sd.sp.63) indicated Cyphocharax albiventris as a member of the Curimatella alburna clade (g. 3). ffle statistical support for the position of the species within this group is relatively low (38%), as is recurrent at the base of all Cyphocharax and Curimatella lineages (g. 3). ffle low support prevents us from suggesting taxonomic adjustments at the genus level, in the direction of recognizing only monophyletic genera, as Cyphocharax is currently paraphyletic, with Curimatella and Steindachnerina nested within it. fflerefore, the generic classi cation of Vari (1991, 1992a,b) for the Curimatidae was followed herein, as it still is the current generic delimitation in usage ( Fricke et al., 2023).
Within that group, the species represents a separate lineage as sister to the clade including Curimatella alburna , Cyphocharax microcephalus , Cu. dorsalis , Cu. meyeri , Cu. immaculata , as well as Cy. leucostictus , Cy. notatus , and Cy. plumbeus . Despite its close relationship with the aforementioned Curimatella , Cy. albiventris lacks scale sheets in the caudal- n lobes, promptly distinguishing it from those species. On the other hand, those species share the strongly countershaded pigmentation pattern, which, in addition to the genetic data presented herein, suggests evidence of close
-57° -54° -51° -48°
relationship. Among the species lacking caudal- n scales, the new species di ers from Cy. leucostictus and Cy. plumbeus by the presence of the caudal blotch onto the caudal peduncle distal tip and the proximal portions of median caudal- n rays (vs. caudal blotch absent).
In all analyses, the monophyly of the species presented the maximum support (100%) and the lineage has an extremely long branch indicating accumulation of nucleotide substitutions and consequently high genetic distance relative to the other species of the Curimatella alburna clade. ffle best distance-based ASAP partition (ASAP score = 2, p value = 0.01194, threshold distance = 0.035; the lower the score, the better the partition) delimited 13 species with the six individuals attributable to Cyphocharax albiventris being delimited as a single Molecular Operational Taxonomic Unit or putative species (g. 4). ffle PTP model delimited 15 species in total (best score for single coalescent rate: 74.829184> null-model score: 70.702021) with the six specimens of Cy. albiventris assigned to a unique species as in the result of the ASAP method (g. 4). A matrix of average intra- and interspeci c K2P genetic distance for each species of the of the Curimatella alburna clade is shown in table 3. Values of interspeci c distance for the new species ranged from 9.7% with Cyphocharax notatus to 13.2% with Cu. immaculata , whereas the intraspeci c distance within the new species was 0.06%. fflerefore, there is compelling molecular evidence for the recognition of that lineage as a distinct species, described herein as Cy. albiventris .
ANCESTRAL STATE RECONSTRUCTION: ffle codi cations for the ancestral state reconstructions of each taxon on the matrix are presented in table S1 (available in the online supplement: https://doi.org/10.5531/sd.sp.63). Despite the considerable variation in form and position, the caudal blotch was considered homologous in all taxa presenting that pigmentation element on the posterior portion of the caudal peduncle, throughout the representatives of the family. Considering the obtained phylogenetic hypothesis, the reconstruction resulted in 16 transformations, all within the Curimatidae . ffle dark pigmentation on the caudal peduncle originated in eight independent instances and was reversed eight times independently in the family (g. S1). ffle origins occurred in Curimatopsis (reversed in Curimatopsis pallida ), Potamorhina laticeps , Pseudocurimata , subclade of the Psectrogaster ciliata clade (reversed in P. ciliata ), a subclade of the Cyphocharax gilbert clade, base of Steindachnerina (reversed in S. hypostoma clade and S. dobula clade), within Curimatella alburna clade (reversed in Cu. alburna and some members), and the Cyphocharax spilurus clade (g. S1).
Within the Curimatidae , the strong countershading evolved in eight independent instances: Potamorhina and Curimata , Pseudocurimata boulengeri , Psectrogaster , Cyphocharax platanus , within the Steindachnerina hypostoma clade, Curimatella lepidura , Cy. magdalenae , and the base of the Cu. alburna clade. fflree independent secondary losses occurred within the Cu. alburna clade: Cy. microcephalus , Cy. notatus , and Cy. plumbeus (see g. S 2 in the online supplement: https://doi.org/10.5531/sd.sp.63).
COMPARATIVE MATERIAL EXAMINED: Cyphocharax abramoides : MPEG 23568 (4, 89.3–129.8 mm SL), Floresta Nacional Caxiuanã, Pará, Brazil. – Cyphocharax albula : MCNIP 807 (holotype of Cy. lundi , 73.7 mm SL), Rio das Velhas, Rio São Francisco, Brazil. – Cyphocharax aninha : MPEG 15767 (25 paratypes, 17.1–21.1 mm SL), Rio Mopeco, Rio Paru, Brazil. – Cyphocharax aspilos : USNM 121311, 2 paratypes, 104.6–108.5 mm SL, Rio Palmar, Venezuela. – Cyphocharax biocellatus : ANSP 189146, holotype, 62.8 mm SL, Suriname, Sipaliwini, Litanie basin. – Cyphocharax boiadeiro : LIRP 14133 (holotype, 42.9 mm SL), Rio Araguaia, Mato Grosso, Brazil. – Cyphocharax caboclo : MNRJ 52506, (holotype, 59.1 mm SL), Rio Correntes, Itiquira, Brazil. – Cyphocharax corumbae : MZUSP 52361 (holotype of Steindachnerina corumbae ), 109.7 mm SL, Rio Pirapitinga, Caldas Novas, Brazil. – Cyphocharax derhami : AMNH 274311, Rio Ucayali, Jenaro Herrera, Peru. – Cyphocharax festivus : USNM 280426, holotype, Peru, Loreto, caños entering Rio Nanay. MZUSP 41300 (5 paratypes, 50.3–61.4 mm SL), Río Nanay, Peru. – Cyphocharax gangamon : MZUSP 22037 (holotype, 48.4 mm SL), Monte Cristo, Rio Tapajós, Brazil. MZUSP 41762 (8 paratypes, 25.3–34.6 mm SL), Monte Cristo, Rio Tapajós, Brazil. – Cyphocharax gilbert : MCNIP 207 (1, 144.8 mm SL), Rio Corrente Grande, Rio Doce. – Cyphocharax gillii : LBP 10789 (16, 24.8–67.0 mm SL), Rio Paraguai, Brazil. – Cyphocharax gouldingi : MZUSP 41762 (holotype, 94.0 mm SL), Rio Cupixi, Amapá, Brazil. MZUSP 41763 (13 paratypes, 65.2–88.3 mm SL), Rio Cupixi, Amapá, Brazil. MZUSP 52249 (3, 42.0– 50.1 mm SL), Rio Tocantins, Brazil. – INPA 47109 (9, not measured), Rio Xingu, Brazil. MPEG 12297 (4, 74.2–78.2 mm SL), Rio Urucu, Coari, Rio Solimões, Brazil. – Cyphocharax a. helleri : INPA 3261 (15, 78.5–112.5 mm SL), Rio Trombetas, Brazil. – Cyphocharax jagunco : MCNIP 1612 (holotype, 48.5 mm SL), Ribeirão da Areia, Rio Jequitinhonha. – Cyphocharax laticlavius : USNM 336594, 9 paratypes, 24.0– 30.9 mm SL, Rio Yasuni, Napo, Ecuador. – Cyphocharax leucostictus : MCZ 787, lectotype of Curimatus leucostictus , 104.3 mm SL, Brazil, Amazonas, Lago Aleixo, Rio Negro. – Cyphocharax meniscaprorus : USNM 235484, 13 paratypes, Venezuela, Bolívar, Rio Aro. – Cyphocharax mestomyllon : MZUSP 41755 (holotype, 36.0 mm SL), Rio Marauiá, Rio Negro, Brazil. Cyphocharax microcephalus : MCZ 785, holotype of Curimatus microcephalus , 104.0 mm SL, Suriname, no exact locality. – Cyphocharax modestus : LBP 19718 (3, 118– 128.3 mm SL), Salto, Rio Tietê, Brazil. – Cyphocharax multilineatus : MPEG 30316 (2, 68.2– 107.1 mm SL), Lago São Francisco, Juruti, Pará, Brazil. – Cyphocharax muyrakytan : LBP 23759, 5 paratypes, 48.1–58.9 mm SL, Brazil, Pará, Santarém, Rio Arapiuns. – Cyphocharax naegelii : LBP 11250 (1, 136.1 mm SL), Rio Tietê, Brazil. – Cyphocharax nigripinnis : MZUSP 42025 (holotype, 53.3 mm SL), Rio Xeruini, Rio Branco, Brazil. – Cyphocharax notatus : MPEG 12229 (2, 113.0– 114.5 mm SL), Coari, Rio Solimões, Brazil. – Cyphocharax oenas : LBP 18659 (6, 46.3–58.3 mm SL), Meta, Río Orinoco, Venezuela. – Cyphocharax pantostictos : USNM 306594, holotype, 72.5 mm SL, Laguna de Jatuncocha, Napo, Ecuador. – Cyphocharax pinnilepis : USNM 298248, 4 paratypes, 31.2–98.5 mm SL, Rio Gongogi, Rio de Contas, Bahia, Brazil. Cyphocharax plumbeus : MCZ 31493, lectotype of Curimatus plumbeus , 94.8 mm SL, Brazil, Amazonas, Paraná do Janauari. MPEG 184 (2, 68.8–70.7) mm SL, Rio Tapajós, Itaituba, Brazil. – Cyphocharax punctatus : MZUSP 38998 (23 paratypes, 16.9–24.8 mm SL), Marowijne river, Suriname. – Cyphocharax saladensis : LBP 6034 (8, 28.1–43.0 mm SL), Rio Maquiné, Osório, Brazil. – Cyphocharax sanctigabrielis : MZUSP 115004 (holotype, 60.7 mm SL), Rio Negro, Brazil. – Cyphocharax santacatarinae : LBP 766 (1, 39.0 mm SL), Rio Marumbi, Morretes, Brazil. – Cyphocharax signatus : MZUSP 41757 (holotype, 33.8 mm SL), Rio Vermelho, Rio Araguaia, Brazil. – Cyphocharax spilotus : USNM 285194, 10 paratypes of Curimata spilota , 35.9–60.6 mm SL, Rio Santa Maria, Brazil. – Cyphocharax spiluropsis : MCZ 98961 (lectotype of Curimatus spiluropsis , 65.6 mm SL), Rio Içá, Solimoes, Brazil. MCZ 20216 (2 paralectotypes of Curimatus spiluropsis , 50.6–52.0 mm SL), Rio Icá, Solimões, Brazil. INPA 19359 (4, not measured), Rio Solimões, Brazil. INPA 25947 (9, not measured), Rio Uatumã, Brazil. INPA 26639 (20, not measured), Rio Madeira, Brazil. INPA 43485 (5, not measured), Rio Xingu, Brazil. LBP 14163 (10, not measured), Rio Tapajós, Brazil. LBP 22424 (2, 78.3–83.0 mm SL), Rio Solimões, Leticia, Colombia. MPEG 23739 (2, 59.5–68.9 mm SL), Rio Maicuru basin, Brazil. – Cyphocharax spilurus : INPA 9211 (10, not measured), Rio Negro, Brazil. INPA 52713 (21, not measured), Rio Takutu, Rio Branco, Brazil. LBP 15612 (4, 39.3–59.9 mm SL), Rio Takutu, Bon m, Brazil. – Cyphocharax stilbolepis : MZUSP 41759 (holotype, 108.1 mm SL), Belo Monte, Rio Xingu, Brazil. – Cyphocharax tamuya : MZUSP 125833 (holotype, 106.8 mm SL), Rio Paraibuna, Brazil. – Cyphocharax vanderi : MZUSP 4325 (holotype, 42.6 mm SL), Corumbataí, Brazil. – Cyphocharax vexillapinnus : MZUSP 41761 (3 paratypes, 50.8–55.0 mm SL), Río Itaya, Peru. – Cyphocharax voga : LBP 17002 (9, 36.0– 42.3 mm SL), Lagoa dos Patos, Rio Grande, Brazil.
R |
Departamento de Geologia, Universidad de Chile |
CS |
Musee des Dinosaures d'Esperaza (Aude) |
T |
Tavera, Department of Geology and Geophysics |
No known copyright restrictions apply. See Agosti, D., Egloff, W., 2009. Taxonomic information exchange and copyright: the Plazi approach. BMC Research Notes 2009, 2:53 for further explanation.